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• Learn different behaviors from trajectories

• Surveillance systems, autonomous vehicles, and 
service robots

• Proactive systems by perceiving behaviors 

• Include behaviors in the trajectory forecasting task

Motivation
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Trajectory forecasting:
• ΔXj={(Δx1, Δy1), … (Δxp, Δyp)}
• ΔYj={(Δxp+1, Δyp+1), … (Δxn, Δyn)}?

Spatio-temporal data:
•  Tj={(Δx1, Δy1), … (Δxn, Δyn)} 

Problem Definition
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1. Adapt self-conditioned GAN (used for image generation) to the 
trajectory generation task [Liu et. al ‘20]

2. Attenuate mode-collapse via soft assumptions drawn from 
self-conditioned GAN

3. Three training settings that improve trajectory forecasting 

Contributions
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1. Identify meaningful modes via Self-conditioned GAN 

2. Use them to define soft-assumptions

3. Apply those soft-assumptions via training settings in 
a CF-GAN

Method
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• Clusters in the discriminator’s feature space 
(updated throughout the training)

• Self-supervised classes (generator 
conditioned on clusters’ ids)

• Embed information provided by this 
clustering space into the trajectory 
generation task

Self-conditioned GAN
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• Quality of the generation of clusters of trajectories (via ADE and FDE)

• Intra-cluster results define the most challenging groups of future 
trajectories

• Clustering space distribution defines the representativeness of 
unsupervised groups of trajectories from the input data

Soft-assumptions based on Self-conditioned GAN
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Metrics to assess the quality of the generation:
ADE: RMSE(Yj, Yj) FDE: d([(xn, yn), (xn, yn)])
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• Common generator’s loss function given by the sum of:

Proposed training settings
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• (1) Penalize MSE (wL2) and (2) weighted batch sampler (wB) given by:



THÖR [Rudenko et. al ‘19]
– 8-time steps observation (3.2s) 12-time steps prediction (4.8s) [Kothari et. al ‘21]
– task-driven roles: 5 or 6 visitors, 2 workers, and 1 inspector

Experiments
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Argoverse [Chang ‘19]
– 20-time steps observation (2s) 30-time steps prediction (3s)
– supervised classes: autonomous vehicles (av), regular vehicles (agents), other road agents (others)
– randomly sampled 5726, 2100, 1678 for training, validation and test sets, respectively [Chandra et.al ‘20]
– training set: 2600 from av, 2600 from agents and 526 from others

Experiments
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Experiments
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Experiments
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Experiments
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Experiments
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• We adapted Self-conditioned GAN to trajectory generation task

• We improved ADE/FDE of least representative supervised and 
unsupervised groups of trajectories

• We improved globally in human trajectory data (THÖR) 

• We obtained competitive global results in road agents trajectory data 
(Argoverse)

Conclusions
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• Modes from our system represent the first step to identify different 
behaviors from trajectories

Conclusions
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