Paper 116: Scalable ROS-Based Architecture to Merge Multi-source Lane Detection Algorithms

Authors:

Tiago Almeida, DEM, University of Aveiro, Portugal
Vítor Santos, DEM, IEETA, University of Aveiro, Portugal
Bernardo Lourenço, DEM, University of Aveiro, Portugal
1. Introduction
2. Proposed Approach
 a. Parametrization of detection algorithms
 b. Combination of multiple algorithms from a single camera
 c. Combination of several cameras, each with one or two algorithms
3. Experimental Infrastructure
 a. Hardware
 b. Software
4. Experiments and Results
5. Conclusions
1. Introduction

ATLASCAR Project

ATLASCAR1 (Ford Escort 1998)

ATLASCAR2 (Mitsubishi i-MiEV 2015)
1. Introduction

- Data from the LIDAR (Light Detection And Ranging) is not sufficient for the perception of road boundaries;
- Detection of road lines/boundary is one of the most important domains of autonomous driving;
- There are several algorithms for detection of limits/road lines, however, there is not one that individually satisfies all situations.
2. Proposed Approach

a. Parametrization of detection algorithms

Input: image from a single camera or multiple cameras

Output:
- Polygon of the road lane
- Lines delimiting the lane

Multiple types of road lane detectors

All algorithms’ outputs have to be on the same data type
2. Proposed Approach

b. Combination of multiple algorithms from a single camera
2. Proposed Approach

1. Blur Filtering

\[I \]

\[F = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \]

\[G = F \otimes I \]
2. Proposed Approach

2. Shifting

\[L = L_C \times N \]

\[L_C = \frac{\text{ceil} \left(\frac{\text{side}(f_s)}{2} \right)}{f_s} \times \alpha \]
2. Proposed Approach

3. Final Confidence Map

\[I \]

\[L = L_C \times N \]

\[M \]
2. Proposed Approach

c. Combination of several cameras, each with one or two algorithms

1. IPM (Inverse Perspective Mapping) technique to transform the polygons into the same frame;

2. Combination of the warped polygons through the logic operations “AND” and “XOR”;

3. Confidence maps of each camera are weighted summed.
3. Experimental Infrastructure

a. Hardware

2 Cameras
Point Grey FL3-GE-28S4-C:
- Resolution: 964 × 724
- FPS: 15

Fixation and protection cameras system
3. Experimental Infrastructure

b. Software

- Flycap
 - Define “frame rate”
 - Define resolution

- pointgrey_camera_driver
 - ROS messages
3. Experimental Infrastructure

b. Software - Processor Algorithm based on Classical Techniques

- **Warp Transformation**: Transformation of the image perspective (similar technique to IPM).
- **Lines Segmentation**: Combination of two techniques: “Colour Selection” e “Edge Detection”.
- **Curve Fitting**: 2nd degree polynomial approximation in order to obtain the curve.
- **Final Image**: Final representation of the road lane line.
3. Experimental Infrastructure

b. Software - Processor Algorithm based on Deep Learning Techniques

- Semantic Segmentation;
- CamVid dataset;
- 11 Classes;
- Encoder-Decoder.
4. Experiments and Results

Validate/comprove:

- Utility;
- Scalability;
- Reliability.

Experiments:

1. 1 single camera + 2 algorithms
2. 2 cameras + 2 algorithms

360 assessed frames
4. Experiments and Results

Indices:

\[
I_1 = \frac{WCA}{A_T}
\]

\[
I_2 = \frac{A_C}{A_T}
\]
4. Experiments and Results

1 single camera + 2 algorithms

(a) Variation of the indices (%).

(b) Standard deviation values.
4. Experiments and Results

2 cameras + 2 algorithms

(a) Variation of the indices (%).

(b) Standard deviation values.
5. Conclusions

- More robust detect road maps than by using the algorithms individually;
- Two types of output representations are converted into an unique representation to allow the merging procedures;
- Valid approach to merge traditional computer vision techniques and DL based classifiers;
- Valid approach to combine multiple source road detection algorithms;
- Next step: migrate into a unified representation, probably based in occupancy grids, to merge data from different sources (LIDAR and cameras).
Paper 116: Scalable ROS-Based Architecture to Merge Multi-source Lane Detection Algorithms

Authors:

Tiago Almeida, DEM, University of Aveiro, Portugal
Vítor Santos, DEM, IEETA, University of Aveiro, Portugal
Bernardo Lourenço, DEM, University of Aveiro, Portugal