

Paper 116: Scalable ROS-Based Architecture to Merge Multi-source Lane Detection Algorithms Authors:

Tiago Almeida, DEM, University of Aveiro, Portugal

Vítor Santos, DEM, IEETA, University of Aveiro, Portugal

Bernardo Lourenço, DEM, University of Aveiro, Portugal

21/11/2019

Presentation Structure

- 1. Introduction
- 2. Proposed Approach
 - a. Parametrization of detection algorithms
 - b. Combination of multiple algorithms from a single camera
 - c. Combination of several cameras, each with one or two algorithms
- 3. Experimental Infrastructure
 - a. Hardware
 - b. Software
- 4. Experiments and Results
- 5. Conclusions

1. Introduction

ATLASCAR Project

ATLASCAR1 (Ford Escort 1998)

ATLASCAR2 (Mitsubishi i-MiEV 2015)

1. Introduction

- Data from the LIDAR (Light Detection And Ranging) is not sufficient for the perception of road boundaries;
- Detection of road lines/boundary is one of the most important domains of autonomous driving;
- There are several algorithms for detection of limits/road lines, however, there is not one that individually satisfies all situations.

a. Parametrization of detection algorithms

b. Combination of multiple algorithms from a single camera

$$F = egin{bmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{bmatrix}$$

$$G = F \otimes I$$

Shifting 2. N $L_C = rac{\operatorname{ceil}(rac{side(f_s)}{2})}{2}$ $\times \alpha$ f_s

 $L = L_C \times N$

3. Final Confidence Map

$$L = L_C \times N$$

c. Combination of several cameras, each with one or two algorithms

- IPM (Inverse Perspective Mapping) technique to transform the polygons into the same frame;
- 2. Combination of the warped polygons through the logic operations "AND" and "XOR";
- 3. Confidence maps of each camera are weighted summed.

3. Experimental Infrastructure

a. Hardware

2 Cameras

Point Grey FL3-GE-28S4-C:

- Resolution: 964 ×724
- FPS: 15

3. Experimental Infrastructure

b. Software - Processor Algorithm based on Classical Techniques

Warp Transformation

Transformation of the image perspective (similar technique to IPM).

Lines Segmentation

Combination of two techniques: "Colour Selection" e "Edge Detection".

Curve Fitting

2nd degree polynomial approximation in order to obtain the curve.

Final Image

Final representation of the road lane line.

3. Experimental Infrastructure

- b. Software Processor Algorithm based on Deep Learning Techniques
 - Semantic Segmentation;
 - CamVid dataset;
 - 11 Classes;
 - Encoder-Decoder.

Validate/comprove:

- Utility;
- Scalability;
- Reliability.

Experiments:

- 1. 1 single camera + 2 algorithms
- 2. 2 cameras + 2 algorithms

Indices:

1 single camera + 2 algorithms

2 cameras + 2 algorithms

5. Conclusions

- More robust detect road maps than by using the algorithms individually;
- Two types of output representations are converted into an unique representation to allow the merging procedures;
- Valid approach to merge traditional computer vision techniques and DL based classifiers;
- Valid approach to combine multiple source road detection algorithms;
- Next step: migrate into a unified representation, probably based in occupancy grids, to merge data from different sources (LIDAR and cameras).

Paper 116: Scalable ROS-Based Architecture to Merge Multi-source Lane Detection Algorithms

Authors:

Tiago Almeida, DEM, University of Aveiro, Portugal

Vítor Santos, DEM, IEETA, University of Aveiro, Portugal

Bernardo Lourenço, DEM, University of Aveiro, Portugal

21/11/2019