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1. Abstract.

Why is trajectory prediction important?
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Autonomous mobile robots must
anticipate other agents’ intentions
in order to move efficiently and
effectively (collision avoidance) in
shared environments.

Courtesy of Ubtech.

Intentions can be encoded as trajectories,
which must be predicted.
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2. Introduction.
What is this talk about?
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What is the usual form of trajectory data?

Moving agents and their respective
navigational styles, roles, preferences,
etc..

A scenario / environment, its affordances and
contextual information.
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What is the usual form of trajectory data?
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Temporal sequences of 2D positions with respect to a global reference frame.
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What is trajectory prediction?

We start by observing a moving agent...
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What is trajectory prediction?

We observe it for a given observation horizon, O...
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What is trajectory prediction?

Based on observed trajectory states and other contextual factors, we predict future velocities, which are then converted into
positions for a given future horizon, T, — O.
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What are trajectory states?

 Trajectory cues that can characterize the moving agent trajectory, such as: 2D absolute positions, displacements, rotated
trajectories, velocities, actions, head orientation, etc..

* Let’s say that we cutoff all trajectories to a defined horizon and stack them. Then, a dataset of trajectories becomes a 3D
tensor:

Observation:

S ¢ RnXOXf

P is the entire trajectory dataset.
S is the observation part of the trajectory dataset.
Y is the future part of the trajectory dataset.
n is the number of trajectories.
T, is the total number of time steps.
fis the length of the state configuration (features).
i O is the number of observed time steps.
L is the number of future time steps.

Trajectories (n)

FUtu re. Only 2D velocities in our work!

Ys € R"*!X2L=T, -0

11
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How can we evaluate trajectory prediction methods?

Top-K Average Displacement Error (ADE) Top-K Final Displacement Error (FDE)

+ mm= Ground truth A
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3. Gap, Approach & Results.

What are current methods lacking?
How could this thesis bridge the gaps?

13
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General claim

Robots share space with numerous dynamic agents

in anthropocentric environments. The behaviors of dynamic
agents are shaped by a complex interplay between external and
internal factors.

External factors include environment, such as obstacles, and internal factors comprise
activities, roles, intentions, and personal preferences.

This thesis addresses the challenges of discovering and modeling
trajectory heterogeneity, a phenomenon arising from these
factors, as trajectory classes, which group trajectories based on
perceived appearance or trajectory cues.

These classes can originate from two primary sources: observable
classes, defined by human semantics and accessible via
perception systems, and data-driven classes, which are
automatically learned from the structure and dynamics of the
trajectory data.

Trajectory Classes

Observable
Classes

R ol

o
5“6 O 1

Externally defined by
appearance, role, or task.
Interpretable and rely on

upstream perception and class
detection.

Data-driven
Classes

Emerge from motion
trajectory patterns. Offer a
latent structure and do not

rely on upstream
observable class detection.

14
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General claim

(1) We find these classes in human motion trajectories datasets, where
observable classes can be detected through robot perception and data-
driven classes are directly found from the data.

(1.1) External and internal factors affect measurable trajectory
cues, such as velocity, acceleration, heading, ongoing action,
etc., which can be used to detect/infer the trajectory classes.

(2) We incorporate trajectory classes both observable and data-
driven into trajectory prediction methods to enhance trajectory
predictions.

Gaps:

prediction.

leverage and cope with heterogeneity in trajectory data.

A\ 4

Observable Classes

Existing methods lack appropriate datasets and mechanisms to

o

Car Pedestrian

No systematic study addressing trajectory heterogeneity for trajectory v
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Class = Car

& Robot Perception
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v
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} 2

Trajectory Cues

orientation, and
ongoing action.

£

(o) E:D Position, velocity,

acceleration, head

J
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Data-driven Classes

J

Data-driven Class
ClusterID =3
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4 Trajectory Prediction

\
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How can we bridge the gaps?

@earch Goal: How can observable and data driven classes\
be effectively used to analyze and predict human trajectory

kdata?

J

RQ1. What datasets are needed to study heterogeneity in human
trajectories, and how to collect them?

RQ2. How can observable classes improve trajectory prediction?
RQ3. How can frame-based actions improve trajectory prediction?

RQ4. How to learn data-driven classes for trajectory prediction?

QS. How can data-driven classes improve trajectory predicv

C1. Heterogeneous trajectory data: THOR-MAGNI data
collection.

C2. Study of observable class-conditioned methods on various
data settings (balanced vs. imbalanced datasets and low data
regimes).

C3. Pitfalls of observable classes and THOR-MAGNI Act.

C4. Data-driven classes (observation-driven, future-driven, and
full-driven) and Self-conditioned GAN.

C5. Improved training settings for GAN-based forecasters and a
multi-stage framework with novel predictions ranking methods.

16
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RQ1: What datasets are needed to study heterogeneity in human
trajectories, and how to collect them?

17
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/ Human Motion Trajectories Datasets

| N

Robot Perception

Observable Classes

Car Pedestrian

Trajectory Cues

Position, velocity,
acceleration, head
orientation, and
ongoing action.

Observable Class

Class = Car

Trajectory Prediction

Data-driven Classes

Data-driven Class
Cluster D=3

What datasets are needed to study
heterogeneity in human trajectories, Z &

and how to collect them?

[1] T. Schreiter, T.R. de
Almeida, et al. THOR-MAGN!I:
A large-scale indoor motion
capture recording of human
movement and robot
interaction. IJRR ‘24.

Main features:

—— Visitors-Group ~ —=— DARKO Robot
—— Visitors-Alone —— Carrier-Large Object

0

THOR-MAGNI data collection?

Carrier-Bucket
Carrier-Box

We need data, specially in
robotics environments where
heterogeneous trajectory
annotated data is scarce.

 Motion capture system to accurately track moving agents.
* Constrained semantically-rich environment promote different
types of trajectories in 5 different scenarios.

J (= « People wearing tracking helmets (®

moving between 7 goal points.

- Mobile robot in the scene @) moving and
as static obstacle.

* Contextual semantics: lane markings (1),
one-way corridors (2), static obstacles

®.

18
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/ Human Motion Trajectories Datasets

Observable Classes

Car Pedestrian

Observable Class

Class = Car

Robot Perception

Trajectory Cues

Position, velocity,
acceleration, head
orientation, and
ongoing action.

Trajectory Prediction

Data-driven Classes

Data-driven Class
ClusterID =3

0

What datasets are needed to study
heterogeneity in human trajectories, = m
and how to collect them?
THOR-MAGNI data collection

Scenario 1 m Scenario 3 § Scenario4 | Scenario 5

Alone, Groups, | Alone, Groups,
Objects Objects
Carriers Carriers

Human Alone
Roles Groups

Alone, Groups, Human-Robot
Interaction (HRI)

Robot Stationary Stationary Moving with 2 Directional
Motion (obstacle) (obstacle) driving styles (semi-autonomous)

. 'lI-. |
Environment s = ®
Layout .
Scenario V | HRI
Condition Semantics 2 robot driving Mij’lc[)i?nodal
onditions No semantics styles HRI
(A and B)

Motion Heterogeneity: - _ _ _

* Scenarios 2 and 3: 90 min. of — 3:2:22:.2?:6 — oo o
trajectory data. W,

* Human roles corresponding to
various activities: moving in groups
of 2 and 3 people (Visitors-Group), ']
moving individually (Visitors-Alone), s
Carrier-Bucket, Carrier-Box, Carrier- i[ vty
Large Object. o

19
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THTD

Human Motion Trajectories Datasets
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Observable Classes
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Trajectory Cues

\

o =:9 Position, velocity,
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- orientation, and
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N
Observable Class
Class = Car
_J
Y

Trajectory Prediction

Data-driven Classes

Data-driven Class
ClusterID =3

What datasets are needed to study

heterogeneity in human trajectories, z
and how to collect them?

THOR-MAGNI data collection

0
S[TY

Motion Heterogeneity:

 Scenarios 2 and 3: 90 min. of
trajectory data.

* Human roles corresponding to
various activities: moving in groups
of 2 and 3 people (Visitors-Group),s so;
moving individually (Visitors-Alone),
Carrier-Bucket, Carrier-Box, Carrier-

Large Object.

Carrier-Bucket

—— Visitors-Group
—— Visitors-Alone

—— Carrier-Large Object
Carrier-Box

;dr

i7 Velocity:

Velocities average and standard deviation per role in 20-time steps trajectories.

Role MAGNI-S2 MAGNI S3A MAGNI S3B
m m m
Carrier-Box 1.12 5 + 0.21 1.15 5 + 0.27 1.08 5 + 0.26
m m m
Carrier-Bucket 1.21 5 + 0.24 1.21 5 + 0.20 1.13 5 + 0.18

ier- m m m
Carrier-large | (-0 ™ L 0.27 0.68 2+0.32  0.76 = +0.36

Object S S s
m m m
Visitors-Alone 0.95 5 + 0.20 0.92 5 + 0.29 0.87 5 + 0.32
m m m
Visitors-Group 0.92 5 + 0.31 0.87 5 + 0.26 0.84 5 + 0.31
Total 0.95 5 + 0.51 091 " + 0.48 0.90 " + 0.48
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Previously...

RQ1. What datasets are needed to study heterogeneity
in human trajectories, and how to collect them?

Cl. THOR-MAGN]I, a dataset of heterogeneous
trajectory data, which was scarce for robotics
environments.

Learning Outcome

The observable classes in THOR-MAGNI demonstrate
distinct motion patterns that could be important for
trajectory prediction in robotics environments.

Next.

Limitations of prior art

Existing heterogeneous trajectory prediction methods
tailored for autonomous driving depend on domain-
specific contextual features (e.g., agent shape).

Robotics applications present unique challenges (cold-
start scenario).

Robotics and autonomous driving domains may feature
non-uniform class distributions (imbalanced data),
leading to decreased performance of deep learning-
based methods.

RQ2. How can observable classes improve trajectory
prediction?

21
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/ Human Motion Trajectories Datasets

(

Robot Perception

&

\ 4

Observable Classes

Car Pedestrian

S A

A\ 4

~N

— /o) =:9 Position, velocity,

I = = acceleration, head
I - orientation, and
v \ - @ ongoing action. )

\

o

|
|
|
|
|
|
I Trajectory Cues
J1
|
|
A 4

\ 4

Observable Class

Class = Car

Trajectory Prediction

Data-driven Classes

Data-driven Class
ClusterID=3

How can observable classes improve m
trajectory prediction? z, £

Study of class-conditioned trajectory prediction
methods in various data settings?

C
Iah)
U

Single-Output:
LSTM
Transformer

LSTM
Transformer

S = (St)t?=1

Multiple-Output:

Ys = ((XtJJ.It)ﬂ): 0+1 | GANs
VAEs

Datasets & Class Proportions:
THOR-MAGN!I dataset

5 observable classes: Carrier-Large Object
(25.7%), Visitors-Group (23.6%), Visitors-Alone (22.7%),
Carrier-Box (14.1%), and Carrier-Bucket (13.9%)

Stanford Drone Dataset

3 observable classes: Pedestrians (66.4%),
Bicyclists (34.3%), and Cars (1.1%)

Imbalanced dataset!
(non-uniform class
proportions!)

22

[2] T. R. de Almeida, Zhu Y, et al., "Trajectory Prediction for Heterogeneous Agents: A Performance
Analysis on Small and Imbalanced Datasets," RA-L 24.



How can observable classes improve

~ trajectory prediction? z, £

/ Human Motion Trajectories Datasets

Study of class-conditioned trajectory
prediction methods

Balanced Dataset Imbalanced Dataset
[ MAGNI-S3A ——cL.STM SDD
Robot Perception oD

-
! 1= Data-driven Classes

|
4 ) $ 80% 30%
Observable Classes | !
l \_ 2o J
Car Pedestrian I
I v 40
I , )
6‘ “}\ I Trajectory Cues
K l — — 0] =—:D Position, velocity,
| I — /'% acceleration, head
Iy — 0 orientation, and ‘é
! vy \_ {:O} ongoing action. ) 51 33.0
R : g 32.4
Observable Class Data-driven Class 2 -
[-9]
)
Class = Car ClusterID=3 = 318 .
y, 2 315 Observation
/ \ ?ﬁ Ground-truth [
4 Trajectory Prediction S 30.6 MoD
> X
Y & < 30.0 BEE cMoD ]
X ) X BN W R VAE L]
________ I CVAE
> ‘me _’i
M . * ] : ’
i | ¢
| | | - K
1 L 1 >
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2D

Human Motion Trajectories Datasets

[

Robot Perception

\ 4

o

Observable Classes

Car Pedestrian

s u?\

‘——————————-

<= =)

\ 4

N
Observable Class

;

J

A\ 4

Trajectory Cues

He

~

o =:9 Position, velocity,
acceleration, head
orientation, and

ongoing action. )

Class = Car
_J

Y

\ 4

/A Trajectory Prediction \

Data-driven Classes

Data-driven Class
ClusterID=3

How can observable classes improve

trajectory prediction? Z, &

Study of class-conditioned trajectory
prediction methods

Informative
observable classes

Trajectory /

Data
A 4
Low Data
Regimes
[ Multiple Output ]
\ 4 ¢ ¢ \ 4
[ Single Output ] Balanced Dataset Im[l))i:?gted Balanced Dataset
MoDs Deep MoDs Deep
Learning Learning

A 4
High Data
Regimes
Imbalanced
Dataset
[ Single Output ] [ Multiple Output ]
Deep MoDs
Learning
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Human Motion Trajectories Datasets

(

Robot Perception

\ 4

Observable Classes

Car Pedestrian

e u?\

o

v \ A 4

— /o) =:9 Position, velocity,

&

A\ 4

_ )
Trajectory Cues

acceleration, head
orientation, and

ongoing action. )

He

Observable Class

Class = Car

\

J

/A Trajectory Prediction \
Y .

\ 4

Data-driven Classes

Data-driven Class
ClusterID=3

Observable Classes Pitfalls

Ambiguity: different classes may share the same trajectory patterns,
and a single class may encompass different trajectory patterns.

Visitors-Alone

Cluster id

i AW N

Total

Carrier
Box

62
6
35
77
20
2
202

Latent Semantic Analysis

Carrier Carrier Visitors Visitors
Bucket Lar. Obj. Alone Group 2
3 54 73 43
1 27 53 33
91 53 87 30
37 64 60 36
21 132 106 37
54 29 47 19
207 359 426 198

Visitors
Group 3

8
3
21
17
11
7
67

Carrier-Bucket

Total

243
123
317
201
327
158
1459

25
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Previously... Next. 0 W

RQ2. How can observable classes improve trajectory

prediction? Limitations of observable classes
 Ambiguity: the same observable class may contain
C2. Study of class-conditioned trajectory prediction different motion patterns. For instance, a Car being
methods on class imbalanced and low-data regimes parked or moving.
settings.
o e Different observable classes may contain the same
/ motion patterns. For instance, a Car moving slowly and a
l | | moving Biker.
ke e The static nature of observable classes can limit their
) — representation power given the complex behavior of
[ Singe Owpur | |Balanced Dataser| | "aene Batanced Datwset| Single Ouput | [ Muliple Ouput | .
T LDiP 1 LDele_p LDele.p T dynamic agents.
Learning Outcome
MoDs have an edge over deep generative methods in
imbalanced data scenarios and over single output RQ3. How can frame-based actions improve trajectory
methods in low-data regimes. prediction?

26
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How can frame-based actions

improve trajectory prediction? % £
THOR-MAGNI Act data collection3

/ Human Motion Trajectories Datasets \

Q;e;ﬁ 55 f 8.3 hours of fine-grained actions are part
@. | g/ of the sequence of input states and can

reduce ambiguity as they decompose the
observable class in a time-varying

sequence of actions.
4 Robot Perception A quence ot actions

\ 4

@ )

Observable Classes

. ;
Data-driven Classes g — 1 \Walk, DrawCard, ObserveCardDraw, WalkLO, PickBucket,
\_ ) WalkBucket, DeliverBucket, PickBox, WalkBox, DeliverBox, PickStorageBin,

|
|
|
Car  Pedestrian | WalkS Bin, DeliverS Bin, HRI
alkStoragebin, DeliverStoragebin
° | \ 4 ) )
\ I 4 _ ) ot - - Visors | [Visitors | [VEHORAIRE _
o o "/l “ | TraJeCtory CueS Bucket Group Alone HRI g 057
I =\ . X Pick Pick ObserveCard ObserveCard | HRI | -§ 00t g e ___{___{___ —————
\ / — - o —: ) Position, velocity, Bucket Box Draw Draw s | S
— = acceleration, head ickStorageBin 2
I I -__ orlentatlonl and Walk Walk WalkLO | WalkStorageBin | <L):Lj =057
I = {é} ¢ 3 Bucket Box e a =1 T | - Global Average
T ongoing action. eliverStorageBin ~1.01
A 4 A A 4 \ going ) Deliver Deliver T T T T
A . Bucket Box DrawCard | 151
Observable Class Data-driven Class o o {
> 1.0
e el
Class = Car ClusterID=3 27000 {27740 mmm CarrierBox °
) Carrier-Bucket Z 05
B Carrier-Large Object N
/ \ 75004 . 7481 BN Carrier-Storage Bin HRI 0.0 1 3 : T T 3 I T T 3 I
1 1 1 Visitors-Alone
4 Trajectory Prediction 0] 31142951 200 aas Vistors Aone £ 100
Y ,ﬁ 1800 1 1877 Visitors-Group % L R o e
7 7]
______________________________ o 50
] ” 5
| Wil | F | 500 A <} :[
Il NEER SRR RN
v | * I .. >
: .'l: §0_0,$' — } —
- I A AN % e A0
i ® | 1004 | ef®OR UK (B (CafC AR el (BO% JKET (B NV BOT (e (B
AW T BUE (08 oW OV TR BUE (O A\ WBVET WY a0
i : ! Dee)%g\%feﬁm‘ O‘a()bc)e(\ltac'é P Wea \Na\\csw‘
' | ' wa  card do(aw a\K"O WA ROk et oB0F @O+ SOt et qe‘?’\“ qu'\f\ geg,'m
5 > DVaW NBCB‘ W We \NB\V‘B De\\\' o \:’\C\LB \-\;e( \\45" ST (3. X @
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[3] T. R. de Almeida, et al. 2025. THOR-MAGNI Act: Actions for Human Motion Modeling in Robot-Shared Industrial

Spaces. HRI ’25.
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Human Motion Trajectories Datasets

(
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@ )

Observable Classes

Pedestrian
o

\
o~ ./
(o) (o) A4 ¥\
Y

Car
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\

‘——————————
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\

Observable Class

Class = Car

J

-

Robot Perception

-

(0 _0 O) j

A 4

\_

He

~
Trajectory Cues

(@) =:9 Position, velocity,
acceleration, head
orientation, and

ongoing action. )

Y

\ 4

/A Trajectory Prediction \

Data-driven Classes

Data-driven Class
ClusterID=3

How can frame-based actions

improve trajectory prediction?

THOR-MAGNI Act data collection

® PickStorageBin
WalkStorageBin
® DeliverStorageBin

Ground truth future actions:
['PickBox','PickBox','PickBox','PickBox',
'PickBox','PickBox','PickBox','PickBox',

'WalkBox','WalkBox', WalkBox', WalkBox']
//"*"—H . |FDE:1.000.11
MTL-OURS future actions:
%‘ ['PickBox','PickBox',' PickBox','PickBox',
'PickBox','PickBox', PickBox', WatkBex',
'WalkBox',"'WalkBox','WalkBox','WalkBox']

<
_ 0]
S= (St)t=1
(e, Ver er Ve )2
Yo Xo Yo Ae)lt=1
Agent | Actions
Model Class Class
0.71 + 0.03
BASELINE 1.37 + 0.05
\/ 0.68 + 0.03
1.30 + 0.07
0.69 + 0.03
OURS V 1.31 + 0.07
V \/ 0.67 £0.03
1.28 £ 0.07
A
—8— Ground truth
—— Baseline

e ks

HRI
Walk

ADE: 0.54 0.16
FDE: 0.91 0.08

#
Params

(K)

36.7

38.1

37.3

38.7

—k— MTL-OURS
—— ACT-OURS

N
(@]
o
@)
>
wn

~—

Model

BASELINE

OURS

—_—

Agent
Class

v/

AS:

P
%

P
<
A

%0 UNW@%

< .. T
Ys = ((xt»yt))ti 0+1

1 - 2
L) =1 > oy - Bl

j=0+1

Tp
(at)t =0+1

Tp Na

L@ydy) = -7 > ) ahlog@)

j=0+1m-=1

1

ADE

Actions FDE

ACC
F1

0.71 £ 0.03
1.37 £ 0.05
0.85+0.01
0.85+0.01

0.68 + 0.04
1.29+0.08
0.62 +0.02
0.61 +0.02

0.70 £ 0.03
1.33 +£0.07
0.83 £ 0.01
0.83 £ 0.01

0.70 £ 0.04
1.32+0.08

v/ 0851001

0.85+0.01

Class

v/
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#
Params

(K)

36.7 +
42.6

46.3

43.3

46.8
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Previously... Next. 0 W

RQ3. How can frame-based actions improve trajectory

prediction? The observable classes hypothesis is simple: agents that

) ) belong to the same trajectory class within a certain
C3. THOR-MAGNI Act, an extension of THOR-MAGNI, predefined framework of abstraction should also move
including frame-based actions to augment the state similarly. Frame-based actions help mitigating some of the
representation of prediction approaches. Extension of ambiguity associated with observable classes.

previous prediction methods to model sequences of

actions. However, both rely on perception and downstream
detection methods that can be erroneous and negatively
impact the predictions.

Learning Outcome
Actions can enhance trajectory prediction by mitigating
some of the ambiguity present in observable classes.

RQ4. How to learn data-driven classes for trajectory
prediction?

29
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—— Visitors-Group  —— Carrier-Large Object Carrier-Bucke!
—— Visitors-Alone ~—— Carrier-Box

/ Human Motion Trajectories Datasets

Observable Classes

Car Pedestrian

Observable Class

Class = Car

Robot Perception

Trajectory Cues

Position, velocity,

acceleration, head

orientation, and
ongoing action.

Trajectory Prediction

y

Data-driven Classes

How to learn data-driven classes for
° ° ° P
trajectory prediction? Z, £

Raw trajectory

Data-driven classes

Translated trajectory

Rotated trajectory 1 \\

& N O N &
[
& N O N &

M

Lo
& N O N &

Any trajectory feature

-50 -25 00 25 50 75 100

=50 -25 00 25 50 75 100

-50 -25 00 25 50 75 100

Data-driven Class

ClusterID =3

%

-6

-50 -25 00 25 50 75 100

=50 -25 00 25 50 75 100

s l based on statistics:
* Velocity

) * Acceleration
clustering ) . "
“ Feature Extraction Inearity
* Heading
* PCA
S Y S®Y;

Obgsvedh clustons

Fituns- fUlunt- daivem _ﬁgs Tbl- dnivon busTpps

O Q : Dt%'

o O O %

/ / /

Q O O l?
o o o ’ T

R monls nupuseat 8 sommt ¢ leton

S is the observation part of the trajectory dataset
Y is the future part of the trajectory dataset

30
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/ Human Motion Trajectories Datasets

Observable Classes

Car Pedestrian

Observable Class

Class = Car

Robot Perception

Trajectory Cues

Position, velocity,
acceleration, head
orientation, and
ongoing action.

Trajectory Prediction

\ 4

Data-driven Classes

Data-driven Class

ClusterID =3

How to learn data-driven classes for

trajectory prediction?

Datasets & Class Proportions:
THOR-MAGN!I dataset and...

Synthetic Dataset

4 observable classes: slow-walker (25%), fast-
walker (25%), zigzag-walker (25%), and random-walker (25 %)

Predictors & Prediction Results

Model Model Type

Baseline

Observable class

TF Observed cluster

Future cluster

Full cluster

Baseline

Observable class

LSTM

Observed cluster

Future cluster

Full cluster

Synthetic

2.03 +0.08
414 £ 0.12

1.98 + 0.08
3.93 £ 0.09

2.04 £+ 0.05
4.09 £ 0.10

1.80 +£ 0.05
3.61t£0.16

1.89 £+ 0.09
3.80+ 015

2.04 + 0.09
4.06 £ 0.12

1.96 + 0.09
3.95+0.12

2.03 +0.09
412 £ 0.13

1.77 £ 0.07
3.62+0.11

1.84 £ 0.06
3.76 +0.13

MAGNI

0.89 + 0.01
1.92 +0.03

0.87 + 0.02
1.87 + 0.04

0.89 + 0.02
1.93 + 0.04

0.65+0.01
1.47 £ 0.02

0.78 £+ 0.01
1.71+0.02

0.89 + 0.02
1.92 + 0.04

0.87 + 0.02
1.86 + 0.04

0.89 + 0.01
1.92 +0.03

0.64+0.01
1.45+0.02

0.77+0.01
1.69+0.02

Observed cluster

S )

&
) ‘J_
1clustering

c =

- s J

@- Observation  —A— TF
-@- Ground truth OBSERVED cTF

2 3
% &
%0 UNTV®
slow walker fast walker

60
40 +

3
20

-204
3

—404

—60 1

random walker

zigzag_walker

T T T T T T
-25 0 25 50 75 100

Future cluster

T T T T T T T T
125 -25 0 25 50 75 100 125

Full cluster

fext Predictor
clustering clustering

-@- Observation
-@- Ground truth

—&— LST™M

@ Observation  —A— TF
-@- Ground truth FUTURE cTF

@ Observation  —A— LSTM

-@- Ground truth

|
:—/’—:"/"'“

/

OBSERVED cLST

FUTURE cLSTM

—.— Observation
-@- Ground truth

—&— TF
FULL cTF

-@- Observation —A— LSTM
-@- Ground truth FULL

cLSTM
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/ Human Motion Trajectories Datasets

2D

Observable Classes

Car Pedestrian

Observable Class

Class = Car

Robot Perception

Trajectory Cues

Position, velocity,
acceleration, head
orientation, and
ongoing action.

Trajectory Prediction

\ 4

Data-driven Classes

\ 4

Data-driven Class
ClusterID=3

How to learn data-driven classes for
trajectory prediction?

o
2 3

6)0 UNW@QV

Traditional clustering techniques, such as K-means and TS K-means face

from limitations:

 K-means consumes 2D data, disregarding sequential patterns that are
similar in dynamics but misaligned in time.
TS K-means uses DTW, which is computationally inefficient.

Self-Conditioned GAN (SC GAN)*

DISCRIMINATOR (D)

[ R
Ys,, Encoder \1 Classifier
Of p - S
Y, LSTM J MLP
\ J

Clustering

Full cluster

mmsms Fyture cluster

GENERATOR (G)

Encoder Decoder
O =W/
ZG k

Clusters in the
discriminator’s
feature space
(updated
throughout the
training).

Self-learned classes
(generator
conditioned on
clusters’ ids).

Clustering task and

generation task
linked.
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[4] T. Rodrigues de Almeida, et al., "Context-free Self-Conditioned GAN for Trajectory Forecasting," ICMLA 22.
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Human Motion Trajectories Datasets

Robot Perception

-

Observable Classes

Data-driven Classes

Car Pedestrian
Trajectory Cues
Position, velocity, |
acceleration, head
orientation, and
v v ongoing action.
Observable Class Data-driven Class
Class = Car ClusterID=3

J

/A Trajectory Prediction
Y -

| |
e _ |
|
|
|
|
|
|
. -
n B
PR
A

How to learn data-driven classes for

Full cluster

Predictor
clustering

trajectory prediction? z, £
Full Cluster SC GAN - Experiments

K-means

0NN W=

Ground Truth

collapse I B

TS K-means

But still why full cluster SC GAN?

Cluster 1 INEG__u
Cluster 2 G
Cluster 3 NG
Cluster 4 s
Cluster 5

Cluster 6 I
Cluster 7 NN

Mitigate
mode
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Previously...

RQ4. How to learn data-driven classes for trajectory
prediction?

C4. A study on the most suitable trajectory segment for
defining a data-driven class in trajectory prediction.

We also noted limitations of current clustering methods
and proposed SC GAN to address them.

Obgsnt ek clustons Rt divem clogls | Eull- dnivonn BusTors

o O O E
/ / /
O ,O O/O I;J
{ O
,UO oyl ]

Red monks nupusemt et commt ¢ lton

Learning Outcomes

Clusters based on the future and entire trajectory
are the most informative for trajectory prediction.
SC GAN can cluster trajectories in a deep feature
space efficiently, overcoming misaligned motion
patterns and mitigating mode collapse.

Next.

Now, let’s leverage these outcomes to build more accurate
trajectory predictors conditioned on data-driven classes.

Human Motion Trajectories

S R4
~ '\,/\' future-driven
.’ (training)

@ €«-"" il ’
E = (8:) _){ GAN )—)YS = ((it,}"t))?:chl }

Clustering
- &
<| & —| %

A
,' full-driven ' full-driven

1

. . [
(training) 1 (inference)

@ B
S= (St)?:1

[+

Decoder

!
4

*Y' _ . . O+L
s — ((xt’ Yt))t:0+1

RQ5. How can data-driven classes
prediction of trajectories?

improve the
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Human Motion Trajectories Datasets

Robot Perception

\ 4

Observable Classes

Car Pedestrian

Data-driven Classes

Trajectory Cues

Position, velocity,
acceleration, head
orientation, and
ongoing action.

\ 4

Observable Class

Class = Car

Data-driven Class
ClusterID=3

J

/A Trajectory Prediction
Y .

bl
|
\
|
|
|
-‘ n
vy =
. T
A

Future cluster

How can data-driven classes improve
the prediction of trajectories? = £
Future Cluster SC GAN - Experiments

Training settings of a regular GAN-based forecaster*:

Penalize MSE (wL2) / For each trajectory in cluster i

Weighted batch sampler (wB) ADE! FDE! !

A= 2aDE Tromax T AFDE mommax T ADist. Froml
Both (WL2 + WB) ADEmax FDE max #Tota

Datasets & Class Proportions
THOR dataset®

3 observable classes: 5 or 6 visitors, 2 workers,
and 1 inspector

G
Argoverse dataset’ i
[, 1
3 observable classes: autonomous vehicles (av, *t |
. - 1
45.4%), regular vehicles (agents, 45.4%), and other ] g )
road agents (others, 9.2%) ;l-w';_t: P z —
; : J.! 1“ w :; -
a $ i -i:— «2)'/"
N
d
p
[4] T. Rodrigues de Almeida, et al., "Context-free Self-Conditioned GAN for Trajectory
Forecasting," ICMLA 22.
[6] A. Rudenko, et al. “THOR: Human-robot navigation data collection and accurate motion trajectories 35

dataset,” RA-L '21.
[7] M. -F. Chang, et al., “Argoverse: 3d tracking and forecasting with rich maps”. CVPR ’19.
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Future cluster

Human Motion Trajectories Datasets

Robot Perception

Observable Classes

Car Pedestrian

Trajectory Cues

Position, velocity,
acceleration, head
orientation, and
ongoing action.

Observable Class

Class = Car

\ 4

Data-driven Classes

\ 4

Data-driven Class
ClusterID=3

Trajectory Prediction

J

a

Point

How can data-driven classes improve

[ ) [ ) [ ) [ ) o: >"
the prediction of trajectories? Z, <
20 <&
. UNIN
Future Cluster SC GAN - Experiments N
Training settings of a regular GAN-based forecaster:
Penalize MSE (wL2) / For each trajectory in cluster i:
Weighted batch sampler (wB) Al ADE' .  FDE' . #
Both (WLZ + WB) ADE A pEmax FDE pppgmax Dist. yTotal
Results (Top-1 ADE/ Top-1 FDE)
Dataset (:':::I;ILDS) Vanilla oure Ours s Outperform on the
9 112+0.03 £1.05+0.05 Y, 1.12+0.04 7 1.04+0.06 underrep.resented
R (23) 276 +0.08 \_2.51+0.13 / 2.81+0.14 %\ 2.51+0.11 / unsupervised classes.
0 0314001 | 032F001 | 0324001 | 0.327F0.02
(1003) | 040+0.01 | 0424002 | 0424002 | 0424002 | Underrepresented are also the
10 718+0.18 | 7114012 | 7.12+006 | 7.05+0.08
Argoverse (16) 18.40 + 042 | 1823+0.30 | 1828+0.11 | 18.13 +0.19 mo_st complgx. Therefore, the
18 0.81+002 | 081+001 | 0814001 ( 0.80+0.01 we|ght applled to the loss
(1542) 1104+ 0.02 | 1.09+0.03 | 1..09+0.03 ~N1.06+0.037 functionisa good tradeoff.
Starting
— X ®P L+t Point
A & F
+  PLstm .+
®*  Pvanilla
x  Pours Final ++
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How can data-driven classes improve
the prediction of trajectories? Z

Future Cluster SC GAN — Generation Results

/ Human Motion Trajectories Datasets

Starting
R Point
Dataset Metric | SC GAN vs cGAN — )f@P A |
* Pours LA
° PC \d AA
ADE 1 Final O
.. 4 PCZ oint e 4
THOR o o
C3 .:
FDE 1
. ,»\ starti
Robot Perception ADE §< Point
= Argoverse > -
Data-driven Classes FDE "
Observable Classes
Car Pedestrian . .
Four clusters from Most challenging cluster in
Trajectory Cues Argoverse THOR
Position, velocity,
acceleration, head
c;rr:er;’icztlc;::dzrr\]d —— Cluster 9 —— Cluster 0 + . X .
going ' Y Cluster 10 —— Cluster 18 > :
Observable Class Data-driven Class . : o
XT * " ’
Class = Car Cluster ID = 3 /’ : Lo
0 ’
/A Trajectory Prediction \ "/ ,
Y : . “T
o % 'ﬁ_ R
_7__7*" v : / g T
| »! . " "
| 1 /- . * .'XT
- : : ‘ : * *
! | 1 . *
! ! ! > ixo J(O
\_ x_/
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How can data-driven classes improve

[ ] [ ] [ ] [ ] ? o: E
- ~ the prediction of trajectories: Z, s
Human Motion Trajectories Datasets . L 20 UNW@%
Multi-stage probabilistic framework>
Robot Perception 3 .
¥ Pl 2 | Clustering
Data-driven Classes Train
'+ S :
Observable Classes o 5[cDGM Y, !
E CSkeYSk Sk :
Car Pedestrian L2k
Trajectory Cues Inference E
Position, velocity, ! 1
acceleration, head ! Sk YSk : 4
orientation, and 1...N _)m_): :
ongoing action. $ E z ¢ . E
. : Ao - .
Observable Class Data-driven Class | Y et Predictions Ranking
1 k 1
Class = Car ClusterID=3 L [5] T. R. de Almeida et
v al., "Likely, Light, and
/ . o \ _ cluster 1 Accurate Context-Free
4 Trajectory Prediction Centroids (cent) Clusters-based
Y o m.is the L2-distance between Trajectory Prediction”.
S ) rediction’s embeddings and the ITSC 23
" op % P 83 ¢ .
———/——jﬂ p w . 1 centroid of each cluster ¢, cluster 2
| » i N Ao
l T O] Y€
-4 ! ! . exp( ¢ luster 3
: } ‘; Do = p( T ) » Neighbors (neigh) st
| | | . .
. > N, mc(D/ m.@is the average L2-distance
\ X/ Zi exp( 7) between the prediction (sample

or embeddings) to the Nyejg
closest neighbors from ¢® .,
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Human Motion Trajectories Datasets

Dataset

THOR

Argoverse

Robot Perception

Observable Classes

Car Pedestrian

Observable Class

Class = Car

Trajectory Cues

Position, velocity,
acceleration, head
orientation, and
ongoing action.

ETH
HOTEL
UNIV

\

y

Data-driven Classes

ZARA1

ZARA2

Model

THOR

A

y Argoverse

Data-driven Class

ClusterID=3 ETH

Y

/A Trajectory Prediction

J

HOTEL

UNIV

a

ZARA1

ZARA2

How can data-driven classes improve

K-means

(O 2 T © 2 [ O O 2 B B O 2 B B O 2 I R O 8

GAN

0.57 £ 0.01
1.04 + 0.03

1.62 + 0.07
2.81+0.14

0.84 + 0.03
1.64 + 0.06

0.87 £0.07
1.64 + 0.12

0.56 +£ 0.01
1.08 + 0.02

0.43 + 0.02
0.82 + 0.07

0.46 + 0.01
0.81 £ 0.05

h ° ° f ° ° ? % E
the prediction of trajectories: 2, £
4, L
. 0 pNIV®
Experiments
TSK-means | FP SC GAN 1 g + 0;
DBI = = ) max(;——)
12 7 Ki_l”“ d(ﬂi»ﬂj)
5 5
5 6 o; is the average distance from points in
5 5 cluster i.
c . d is the Euclidean distance between cluster
centroids. ..
> 4 THOR Argoverse ZARA2
5 4 ‘
p3= 0-16‘:“
Top-3 ADE/FDE p1=0.26 £ p1=0.15
GAN-OURS VAE VAE-OURS ,.v\‘tpo =0.48
e =0.40
0.53 +0.01 0.62 + 0.02 0.56 + 0.01 . 1p2=0.26
0.84 + 0.03 1.05 + 0.05 0.89 + 0.02
1.56+0.02 | 1964002 | 1.62+0.02 ko X LUy P W pred)
2.69+0.02 @ 344+006 | 2.82+0.04 er +- A
0.77+0.04 | 094+002 | 0.82+0.02 Accuracy (0-1)
1.60+0.11 = 1.84+0.04 1.60 + 0.04 Clustering Ranking
ETH UNIV
method method
0.814+0.10 | 1.08 4+ 0.04 0.97 + 0.08 cos 1001 | osazoor
1.46+0.11 | 1.95+0.06 1.72 +0.14 cent 70 0. (04T .
K-means neigh-ds 0.98 + 0.01 0.81+0.01
Neural Net | 0.93 + 0.02 0.83 + 0.01
0.51+0.01 0.61 + 0.01 0.56 + 0.01
0.98+0.03 116+001 | 1.06+0.02 TS K- cent 095+001 | 0.87+0.01
ol neigh-ds 0.98+0.01 @ 0.82+0.01
eans Neural Net 0.95 + 0.01 0.84 + 0.01
0.37 +0.01 0.48 + 0.01 0.44 + 0.01
0.72+0.03 | 098+ 0.04 0.91+0.03 cent 070+£011 | 0.65+0.02
FP SC GAN neigh-fs 0.75+ 0.05 0.65+0.03
Neural Net | 0.69 + 0.08 0.56 + 0.03
0.40 + 0.01 0.49 + 0.01 0.43 +0.01
0.65 + 0.03 0.86 + 0.05 0.73 4+ 0.01
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: @
Previously... %0 e
RQ5. How can data-driven classes improve the prediction of trajectories?

C5. SC GAN to mitigate mode collapse in GAN-based forecasters.
Data-driven classes incorporated in a multi-stage approach using novel predictions ranking methods.

I Cluster 1 IE_—_— . g .
|| Clistor 2 mmm Predictions Ranking
Ground Truth Cluster 3 IE— - e L L :
Cluster 4 1 1
Cluster 5 1 Tl'aln : A
Cluster 6 NN : S , Ye¢ Ao
k ¢

Cluster 7 NN

Mitigate 5. cluster 1
mode ]
collapse W == = 'z | ...
. Inference e uster 2
1 Sk N Y.ék v cluster 3
o DM \
A

Learning Outcomes

SC GAN and the tree training settings effectively reduce mode collapsing by lowering the prediction errors in the clusters
associated with the highest prediction errors.

The multi-stage framework is more accurate than the baselines. The corresponding predictions ranking methods are more efficient
and sometimes more accurate than neural networks.
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4. Contributions Overview.
What could this thesis accomplish?
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Actions to augment the state!

Still observable... = o~
) &
< )

[3] T. R. de Almeida, et al., “THOR-MAGNI Act: Actions for » N
Human Motion Modeling in Robot-Shared Industrial 0O UNX\IQ)
Spaces”. HRI '25.

rObservabIe classes:
* Can be ambiguous.
* Depend on external perception (“observable”).

[2] T. R. de Almeida, Zhu Y, et al., "Trajectory Prediction for . o . ]
* Are explainable and promote safe decision making based on human semantics.

— 9 Heterogeneous Agents: A Performance Analysis on Small ) s i
@ and Imbalanced Datasets”. RA-L 24. * Deep learning methods struggle on class imbalanced and low data regimes.
Y0 \ _J
To model heterogenous trajectory data, we propose tt -
Trajectory Classes! — _M_l—> ¢, Observable class: agent type, activity, etc.
—— Visitors-Grou —— Carrier-Large Objec arrier-Bucke
—— Visi:ors—/flonep garrier—;oxg object c pucket : 2 f
Y
A
Y g “““““““ 'ﬁ‘":
o T . ‘o
s = %= (Goy )™ . e
- ef % YS - ((xt' yt))t=0+1 | .
| » | :
>4 | i | 1
T | | |
. c | | |
I | : | :
. 0 >
((Xt, Ve Xe, Ve, Q) ) =1 AL = Tp
[1] T. Schreiter, T.R. de Almeida, et al., THOR-MAGNI: A large-scale > Data-driven classes > Data-driven class dEtECtiOI’I
indoor motion capture recording of human movement and robot Cluster 1 [ . \
: e Data-driven class:

Cluster 3 Iu— Centroids (Cent)

Cluster 4
Cluster 5
Cluster 6 I
Cluster 7 I

interaction. IJRR ‘24.

Ao
c

m_is the L2-distance between * Can overfit to the training data.

chrn
Y
cluster 1 e, . * Are less explainable.
prediction’s embeddings and the P )
. W * Depend on future trajectory to enhance
centroid of each cluster c'V.
cluster 2
Qcm

trajectory prediction.

[4] T. Rodrigues de - - _
* Require detection mechanisms.

Almeida, et al., "Context-
free Self-Conditioned
GAN for Trajectory
Forecasting," ICMLA 22.

s Neighbors (neigh)

\ m.@is the average L2-distance " Once dfeTECtEd accurately, are very
> rful.
between the prediction (sample K powertu j
or embeddings) to the Ny

[5] T. R. de Almeida et al., "Likely, closest neighbors from ¢,

Light, and Accurate Context-Free
Clusters-based Trajectory
Prediction”. ITSC 23. 42
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5. Future Work.

Where should we go from here?
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Hybrid Observable and Data-driven Class Conditioning

Observable
Classes

Car Pedestrian
[ }

o AR Complementary strengths:
 Observable classes provides
| explainability and human
v - v - semantics.

[ Data-driven [ Data-driven |« Data-driven  classes  captures
| Classes (Car) | Classes (Ped.) ) -

s | ..\ " | motion-specific patterns.
Z " A
K 1 oy | Combining observable and data-
| Cluster 1 | — cuser2 | AFiven classes presents an opportunity
s Cluster 3 ) to unify semantic interpretability with

I | motion-based expressiveness.

Merged Classes

mmmm (Cluster 2

Car Car
Cluster 1 Cluster 2

Ped Ped Ped
Cluster 1 Cluster 2 Cluster 3

S =/

Time-Granularity in Data-driven Classes

Ground truth decomposition

YT Curvature

Straight

Stopping

Walk (slowing down)

A 4

Curvature

Slowing Down

Stopping

Trajectory
Predictor

Current formulation of data-driven
classes overlooks temporal evolution
of motion patterns within a single
trajectory. Temporal decomposition
of  data-driven classes aligns
conceptually to the notion of fine-
grained actions enhancing:

. * Predictors can identify and respond

to local behaviors such as an
upcoming stop or turning.

"+ Improved generalization as shorter

segments are more generalizable
across agents and contexts.

* Realism and interpretability by
reflecting the inherently uneven
structure of motion.

44



WALLENBERG Al
\/\//\S F) | AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Learning to Understand and Predict
Heterogeneous Trajectory Data

Tiago Rodrigues de Almeida'
Andrey Rudenko?
Johannes Andreas Stork!
Achim J. Lilienthal%?

1. Orebro University; 2. Technical University of Munich
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