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1. Abstract.
Why is trajectory prediction important?
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Courtesy of Ubtech.

Autonomous mobile robots must
anticipate other agents’ intentions
in order to move efficiently and
effectively (collision avoidance) in
shared environments.

Intentions can be encoded as trajectories, 
which must be predicted.



2. Introduction.
What is this talk about?
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What is the usual form of trajectory data?
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A scenario / environment, its affordances and 
contextual information.

Moving agents and their respective 
navigational styles, roles, preferences, 
etc..   



What is the usual form of trajectory data?
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Temporal sequences of 2D positions with respect to a global reference frame.



What is trajectory prediction?
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X

Y

We start by observing a moving agent…

𝑥!

𝑦!



What is trajectory prediction?

9
X

Y

We observe it for a given observation horizon, 𝑂…

𝑦"

𝑦!

𝑥"𝑥!



What is trajectory prediction?
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Trajectory Prediction
Observe 

Predict

X

Y

Based on observed trajectory states and other contextual factors, we predict future velocities, which are then converted into 
positions for a given future horizon, 𝑇! − 𝑂. 

𝑺 = (𝒔𝒕)"#$%

𝒀𝑺 = ((𝑥̇" , 𝑦̇"))" # %'$
(!

𝑦#!

𝑦"

𝑦!

𝑥"𝑥! 𝑥#!



What are trajectory states?
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• Trajectory cues that can characterize the moving agent trajectory, such as: 2D absolute positions, displacements, rotated 
trajectories, velocities, actions, head orientation, etc..

• Let’s say that we cutoff all trajectories to a defined horizon and stack them. Then, a dataset of trajectories becomes a 3D 
tensor: 

𝐘𝐒 ∈ ℝ# × % × &, 𝐿 = 𝑇! − 𝑂

𝐒 ∈ ℝ# ×' × (
Observation:

Future:

𝑷 is the entire trajectory dataset.
𝑺 is the observation part of the trajectory dataset.
𝒀 is the future part of the trajectory dataset.
n is the number of trajectories.
𝑇$ is the total number of time steps.
f is the length of the state configuration (features).
𝑂 is the number of observed time steps.
𝐿 is the number of future time steps.

Only 2D velocities in our work!

Trajectories (n)

State (f)
time steps (𝑇! )

𝑷 ∈ ℝ# × *!×(



How can we evaluate trajectory prediction methods?
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𝑇$ is the number of time steps.
𝑂 is the number of observed time steps.

Top-K Average Displacement Error (ADE)

X

Y
Ground truth
Trajectory prediction

X

Y

Top-K Final Displacement Error (FDE)

𝑥! 𝑥" 𝑥#! 𝑥! 𝑥" 𝑥#!

𝑦!

𝑦"

𝑦#!

𝑦!

𝑦"

𝑦#!



3. Gap, Approach & Results.
What are current methods lacking? 

How could this thesis bridge the gaps?
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General claim
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This thesis addresses the challenges of discovering and modeling
trajectory heterogeneity, a phenomenon arising from these
factors, as trajectory classes, which group trajectories based on
perceived appearance or trajectory cues.

These classes can originate from two primary sources: observable
classes, defined by human semantics and accessible via
perception systems, and data-driven classes, which are
automatically learned from the structure and dynamics of the
trajectory data.

Trajectory Classes
Observable
Classes

Externally defined by
appearance, role, or task.
Interpretable and rely on

upstream perception and class
detection. 

Data-driven
Classes

Emerge from motion
trajectory patterns. Offer a
latent structure and do not

rely on upstream
observable class detection.

Robots share space with numerous dynamic agents
in anthropocentric environments. The behaviors of dynamic
agents are shaped by a complex interplay between external and
internal factors.

External factors include environment, such as obstacles, and internal factors comprise
activities, roles, intentions, and personal preferences.



Robot Perception

General claim
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(1) We find these classes in human motion trajectories datasets, where 
observable classes can be detected through robot perception and data-
driven classes are directly found from the data. 

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class

Trajectory Prediction

Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

(1.1) External and internal factors affect measurable trajectory 
cues, such as velocity, acceleration, heading, ongoing action, 
etc., which can be used to detect/infer the trajectory classes. 

(2) We incorporate trajectory classes both observable and data-
driven into trajectory prediction methods to enhance trajectory 
predictions.

X

Y

Gaps:
No systematic study addressing trajectory heterogeneity for trajectory 
prediction.
Existing methods lack appropriate datasets and mechanisms to 
leverage and cope with heterogeneity in trajectory data.



How can we bridge the gaps?
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RQ1. What datasets are needed to study heterogeneity in human 
trajectories, and how to collect them?

RQ2. How can observable classes improve trajectory prediction?

RQ3. How can frame-based actions improve trajectory prediction?

RQ4. How to learn data-driven classes for trajectory prediction?

RQ5. How can data-driven classes improve trajectory prediction?

Research Goal: How can observable and data driven classes 
be effectively used to analyze and predict human trajectory 
data? C1. Heterogeneous trajectory data: THÖR-MAGNI data 

collection.

C2. Study of observable class-conditioned methods on various 
data settings (balanced vs. imbalanced datasets and low data 
regimes).

C3. Pitfalls of observable classes and THÖR-MAGNI Act.

C4. Data-driven classes (observation-driven, future-driven, and 
full-driven) and Self-conditioned GAN.

C5. Improved training settings for GAN-based forecasters and a 
multi-stage framework with novel predictions ranking methods.



RQ1: What datasets are needed to study heterogeneity in human 
trajectories, and how to collect them?
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Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class

Trajectory Prediction

Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

X

Y

THÖR-MAGNI data collection1

What datasets are needed to study 
heterogeneity in human trajectories, 

and how to collect them?

We need data, specially in 
robotics environments where 
heterogeneous trajectory 
annotated data is scarce.

Main features:
• Motion capture system to accurately track moving agents.
• Constrained semantically-rich environment promote different 

types of trajectories in 5 different scenarios.
• People wearing tracking helmets       

moving between 7 goal points.

• Mobile robot in the scene       moving and 
as static obstacle.

• Contextual semantics: lane markings       , 
one-way corridors      , static obstacles     

.

3

4 5

1
3

2

4

1

2

5

[1] T. Schreiter, T.R. de
Almeida, et al. THÖR-MAGNI:
A large-scale indoor motion
capture recording of human
movement and robot
interaction. IJRR ‘24.
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Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class

Trajectory Prediction

Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

X

Y

THÖR-MAGNI data collection

What datasets are needed to study 
heterogeneity in human trajectories, 

and how to collect them?

Scenario 1 Scenario 2

Human
Roles

Robot
Motion

Environment 
Layout

Scenario
Conditions 
(A and B)

Scenario 3 Scenario 4 Scenario 5

Alone
Groups

Alone, Groups, 
Objects 
Carriers

Stationary
(obstacle)

Semantics
No semantics

Stationary
(obstacle)

Alone, Groups, 
Objects 
Carriers

Moving with 2 
driving styles

2 robot driving 
styles

Alone, Groups, Human-Robot 
Interaction (HRI)

Directional
(semi-autonomous)

Verbal HRI
Multimodal 

HRI

Motion Heterogeneity:
• Scenarios 2 and 3: 90 min. of 

trajectory data.
• Human roles corresponding to 

various activities: moving in groups 
of 2 and 3 people (Visitors-Group), 
moving individually (Visitors-Alone), 
Carrier-Bucket, Carrier-Box, Carrier-
Large Object.

Velocity:
0.92土0.31

Velocity:
1.12土0.21

Velocity:
1.21土0.24

Velocity:
0.72土0.27

Velocity:
0. 95土0.20
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Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class

Trajectory Prediction

Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

X

Y

THÖR-MAGNI data collection

What datasets are needed to study 
heterogeneity in human trajectories, 

and how to collect them?

Motion Heterogeneity:
• Scenarios 2 and 3: 90 min. of 

trajectory data.
• Human roles corresponding to 

various activities: moving in groups 
of 2 and 3 people (Visitors-Group), 
moving individually (Visitors-Alone), 
Carrier-Bucket, Carrier-Box, Carrier-
Large Object.

Velocity:
0.92土0.31

Velocity:
1.12土0.21

Velocity:
1.21土0.24

Velocity:
0.72土0.27

Velocity:
0. 95土0.20

Role MAGNI-S2 MAGNI S3A MAGNI S3B

Carrier-Box 1.12
m
s ± 0.21 1.15

m
s ± 0.27 1.08

m
s ± 0.26

Carrier-Bucket 1.21
m
s ± 0.24 1.21

m
s ± 0.20 1.13

m
s ± 0.18

Carrier-Large
Object 𝟎. 𝟕𝟐

𝒎
𝒔
± 𝟎. 𝟐𝟕 𝟎. 𝟔𝟖

𝒎
𝒔
± 𝟎. 𝟑𝟐 𝟎. 𝟕𝟔

𝒎
𝒔
± 𝟎. 𝟑𝟔

Visitors-Alone 0.95
m
s ± 0.20 0.92

m
s ± 0.29 0.87

m
s ± 0.32

Visitors-Group 0.92
m
s ± 0.31 0.87

m
s ± 0.26 0.84

m
s ± 0.31

Total 0.95
m
s ± 0.51 0.91

m
s ± 0.48 0.90

m
s ± 0.48

Velocities average and standard deviation per role in 20-time steps trajectories.
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RQ1. What datasets are needed to study heterogeneity
in human trajectories, and how to collect them?

C1. THÖR-MAGNI, a dataset of heterogeneous
trajectory data, which was scarce for robotics
environments.

Learning Outcome

The observable classes in THÖR-MAGNI demonstrate
distinct motion patterns that could be important for
trajectory prediction in robotics environments.

Limitations of prior art
• Existing heterogeneous trajectory prediction methods 

tailored for autonomous driving depend on domain-
specific contextual features (e.g., agent shape).

• Robotics applications present unique challenges (cold-
start scenario).

• Robotics and autonomous driving domains may feature 
non-uniform class distributions (imbalanced data), 
leading to decreased performance of deep learning-
based methods.

RQ2. How can observable classes improve trajectory
prediction?

Previously… Next.
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Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class

Trajectory Prediction

Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

X

Y

Study of class-conditioned trajectory prediction 
methods in various data settings2

How can observable classes improve 
trajectory prediction?

En
co

de
r Decoder

𝐒 = (𝐬𝒕)#$%& /𝐘𝐒 = ((𝑥̇# , 𝑦̇#))# $ &(%)

c

⊕

LSTM
Transformer

Datasets & Class Proportions:
THÖR-MAGNI dataset

5 observable classes: Carrier-Large Object
(25.7%), Visitors-Group (23.6%), Visitors-Alone (22.7%), 
Carrier-Box (14.1%), and Carrier-Bucket (13.9%) 

Stanford Drone Dataset
3 observable classes: Pedestrians (66.4%), 

Bicyclists (34.3%), and Cars (1.1%)

Imbalanced dataset! 
(non-uniform class 

proportions!)

[2] T. R. de Almeida, Zhu Y, et al., "Trajectory Prediction for Heterogeneous Agents: A Performance
Analysis on Small and Imbalanced Datasets," RA-L ‘24.

Single-Output:
LSTM
Transformer

Multiple-Output:
GANs
VAEs



Balanced Dataset Imbalanced Dataset
MAGNI-S3A SDD

Train set ratio

Error
metric

Av
er

ag
e 

D
is

pl
ac

em
en

t E
rr

or
 

cLSTM
cTF
cMoD
cGAN
cVAE
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Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

Study of class-conditioned trajectory 
prediction methods

How can observable classes improve 
trajectory prediction?

Trajectory Prediction

X

Y

Observation
Ground-truth
MoD
cMoD
VAE
cVAE
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Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

Study of class-conditioned trajectory 
prediction methods

How can observable classes improve 
trajectory prediction?

Trajectory Prediction

X

Y

Trajectory
Data

Informative
observable classes 

Low Data
Regimes

High Data
Regimes

MoDs

Imbalanced
Dataset

Balanced Dataset

Deep
Learning

Multiple OutputSingle Output

Deep
Learning MoDs

Multiple Output

Single Output

Deep
Learning

Balanced Dataset Imbalanced
Dataset

MoDs
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Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

Observable Classes Pitfalls

Trajectory Prediction

X

Y

Ambiguity: different classes may share the same trajectory patterns,
and a single class may encompass different trajectory patterns.

Visitors-Alone Carrier-Bucket

Latent Semantic Analysis
Cluster id Carrier

Box
Carrier
Bucket

Carrier
Lar. Obj.

Visitors
Alone

Visitors
Group 2

Visitors
Group 3

Total

1 62 3 54 73 43 8 243

2 6 1 27 53 33 3 123

3 35 91 53 87 30 21 317

4 77 37 64 60 36 17 291

5 20 21 132 106 37 11 327

6 2 54 29 47 19 7 158

Total 202 207 359 426 198 67 1459
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RQ2. How can observable classes improve trajectory
prediction?

C2. Study of class-conditioned trajectory prediction
methods on class imbalanced and low-data regimes
settings.

Learning Outcome
MoDs have an edge over deep generative methods in
imbalanced data scenarios and over single output
methods in low-data regimes.

Limitations of observable classes
• Ambiguity: the same observable class may contain 

different motion patterns. For instance, a Car being 
parked or moving.

• Different observable classes may contain the same 
motion patterns. For instance, a Car moving slowly and a 
moving Biker.

• The static nature of observable classes can limit their 
representation power given the complex behavior of 
dynamic agents.

RQ3. How can frame-based actions improve trajectory
prediction?

Trajectory
Data

Informative
observable classes 

Low Data
Regimes

High Data
Regimes

MoDs

Imbalanced
Dataset

Balanced Dataset

Deep
Learning

Multiple OutputSingle Output

Deep
Learning MoDs

Multiple Output

Single Output

Deep
Learning

Balanced Dataset Imbalanced
Dataset

MoDs

Previously… Next.



Carrier-Large 
Object

WalkLO

ObserveCard
Draw

Walk

Carrier-
Bucket

Pick
Bucket

Walk
Bucket

Deliver
Bucket

Pick
Box

Walk
Box

Deliver
Box

Carrier-Storage Bin
HRI

DrawCard

PickStorageBin

WalkStorageBin

DeliverStorageBin

HRI

Visitors- 
Alone

Visitors-
Group

ObserveCard
Draw

Visitor-Alone
HRI

Carrier-
Box
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Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

THÖR-MAGNI Act data collection3

How can frame-based actions 
improve trajectory prediction?

Trajectory Prediction

X

Y

8.3 hours of fine-grained actions are part 
of the sequence of input states and can 
reduce ambiguity as they decompose the 
observable class in a time-varying 
sequence of actions. 

𝒜 = { Walk, DrawCard, ObserveCardDraw, WalkLO, PickBucket, 
WalkBucket, DeliverBucket, PickBox, WalkBox, DeliverBox, PickStorageBin, 
WalkStorageBin, DeliverStorageBin, HRI }

[3] T. R. de Almeida, et al. 2025. THÖR-MAGNI Act: Actions for Human Motion Modeling in Robot-Shared Industrial
Spaces. HRI ’25.



28

Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

THÖR-MAGNI Act data collection

How can frame-based actions 
improve trajectory prediction?

Trajectory Prediction

X

Y

En
co

de
r

Decoder
(trajec.)

𝐒 = (𝐬𝒕)#$%&

/𝐘𝐒 = ((𝑥̇# , 𝑦̇#))# $ &(%
*!

c

⊕

Decoder
(actions)

/𝐀𝐒 = (𝑎#)# $ &(%
*!

c

⊕

Ground truth future actions:
['PickBox','PickBox','PickBox','PickBox',
'PickBox','PickBox','PickBox','PickBox',
'WalkBox','WalkBox','WalkBox','WalkBox']

MTL-OURS future actions:
['PickBox','PickBox','PickBox','PickBox',
'PickBox','PickBox','PickBox','WalkBox',
'WalkBox','WalkBox','WalkBox','WalkBox']

ADE: 0.54 0.16
FDE: 0.91 0.08

ADE: 0.69 0.23
FDE: 1.00 0.11

((𝑥# , 𝑦# , 𝑥̇# , 𝑦̇# , 𝑎#))# $ %+

ℒ 𝐏𝐒, %𝐏𝐒 =
1
𝐿

)
"#$%&

'!

𝐩" − ,𝐩" (
(

ℒ 𝐚𝐒, .a𝐒 = −
1
𝐿

)
"#$%&

'!

)
) # &

*"

𝑎)
" log(5𝑎)

" )

Model Agent
Class

Actions
Class

ADE
FDE

#
Params 

(K)

BASELINE 0.71 ± 0.03
1.37 ± 0.05 36.7

OURS

0.68 ± 0.03
1.30 ± 0.07 38.1

0.69 ± 0.03
1.31 ± 0.07 37.3

𝟎. 𝟔𝟕 ± 𝟎. 𝟎𝟑
𝟏. 𝟐𝟖 ± 𝟎. 𝟎𝟕 38.7

Model Agent
Class

Actions
Class

ADE
FDE
ACC
F1

#
Params 

(K)

BASELINE

0.71 ± 0.03
1.37 ± 0.05
𝟎. 𝟖𝟓 ± 𝟎. 𝟎𝟏
𝟎. 𝟖𝟓 ± 𝟎. 𝟎𝟏

36.7 + 
42.6

OURS

𝟎. 𝟔𝟖 ± 𝟎. 𝟎𝟒
𝟏. 𝟐𝟗 ± 𝟎. 𝟎𝟖
0.62 ± 0.02
0.61 ± 0.02

46.3

0.70 ± 0.03
1.33 ± 0.07
0.83 ± 0.01
0.83 ± 0.01

43.3

0.70 ± 0.04
1.32 ± 0.08
𝟎. 𝟖𝟓 ± 𝟎. 𝟎𝟏
𝟎. 𝟖𝟓 ± 𝟎. 𝟎𝟏

46.8
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RQ3. How can frame-based actions improve trajectory
prediction?

C3. THÖR-MAGNI Act, an extension of THÖR-MAGNI,
including frame-based actions to augment the state
representation of prediction approaches. Extension of
previous prediction methods to model sequences of
actions.

Learning Outcome
Actions can enhance trajectory prediction by mitigating
some of the ambiguity present in observable classes.

The observable classes hypothesis is simple: agents that 
belong to the same trajectory class within a certain 
predefined framework of abstraction should also move 
similarly. Frame-based actions help mitigating some of the 
ambiguity associated with observable classes.

However, both rely on perception and downstream 
detection methods that can be erroneous and negatively 
impact the predictions.

RQ4. How to learn data-driven classes for trajectory
prediction?

Previously… Next.
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Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

Data-driven classes

How to learn data-driven classes for 
trajectory prediction?

Trajectory Prediction

X

Y

Feature Extraction

Any trajectory feature 
based on statistics:
• Velocity
• Acceleration
• Linearity
• Heading
• PCA

𝑺 𝒀𝑺 𝑺 ⨁ 𝒀𝑺

𝑺 is the observation part of the trajectory dataset
𝒀 is the future part of the trajectory dataset

clustering
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Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

How to learn data-driven classes for 
trajectory prediction?

Trajectory Prediction

X

Y

Datasets & Class Proportions:
THÖR-MAGNI dataset and… 

Synthetic Dataset
4 observable classes: slow-walker (25%), fast-

walker (25%), zigzag-walker (25%), and random-walker (25 %)

Predictors & Prediction Results:

Model Model Type Synthetic MAGNI

TF

Baseline 2.03 ± 0.08
4.14 ± 0.12

0.89 ± 0.01
1.92 ± 0.03

Observable class 1.98 ± 0.08
3.93 ± 0.09

0.87 ± 0.02
1.87 ± 0.04

Observed cluster 2.04 ± 0.05
4.09 ± 0.10

0.89 ± 0.02
1.93 ± 0.04

Future cluster 𝟏. 𝟖𝟎 ± 𝟎. 𝟎𝟓
𝟑. 𝟔𝟏 ± 𝟎. 𝟏𝟔

𝟎. 𝟔𝟓 ± 𝟎. 𝟎𝟏
𝟏. 𝟒𝟕 ± 𝟎. 𝟎𝟐

Full cluster 1.89 ± 0.09
3.80 ± 0.15

0.78 ± 0.01
1.71 ± 0.02

LSTM

Baseline 2.04 ± 0.09
4.06 ± 0.12

0.89 ± 0.02
1.92 ± 0.04

Observable class 1.96 ± 0.09
3.95 ± 0.12

0.87 ± 0.02
1.86 ± 0.04

Observed cluster 2.03 ± 0.09
4.12 ± 0.13

0.89 ± 0.01
1.92 ± 0.03

Future cluster 𝟏. 𝟕𝟕 ± 𝟎. 𝟎𝟕
𝟑. 𝟔𝟐 ± 𝟎. 𝟏𝟏

𝟎. 𝟔𝟒 ± 𝟎. 𝟎𝟏
𝟏. 𝟒𝟓 ± 𝟎. 𝟎𝟐

Full cluster 1.84 ± 0.06
3.76 ± 0.13

0.77 ± 0.01
1.69 ± 0.02

𝑓#$%

Predictor

𝐒

%𝐘𝐒

c 𝑓#$% Predictor

𝐒

%𝐘𝐒
c

𝐘𝐒
clustering

𝑓#$% Predictor

𝐒

%𝐘𝐒
c

𝐒⨁𝐘𝐒

Observed cluster Future cluster Full cluster

clustering clustering
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Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

Self-Conditioned GAN (SC GAN)4

How to learn data-driven classes for 
trajectory prediction?

Traditional clustering techniques, such as K-means and TS K-means face 
from limitations:
• K-means consumes 2D data, disregarding sequential patterns that are 

similar in dynamics but misaligned in time.
• TS K-means uses DTW, which is computationally inefficient. 

Encoder

LSTM

Classifier

MLP

Encoder

LSTM

Decoder

MLP
⨁
𝐳-,𝒌

/𝐘𝐒#𝐒0⨁c0

c 0

Clustering

s

/𝐘𝐒#

𝐘𝐒#
or

DISCRIMINATOR (D)

GENERATOR (G)

Future cluster
Full cluster

• Clusters in the 
discriminator’s 
feature space 
(updated 
throughout the 
training).

• Self-learned classes 
(generator 
conditioned on 
clusters’ ids).

• Clustering task and 
generation task 
linked.

Trajectory Prediction

X

Y

[4] T. Rodrigues de Almeida, et al., "Context-free Self-Conditioned GAN for Trajectory Forecasting," ICMLA ‘22.
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Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

Full Cluster SC GAN - Experiments

How to learn data-driven classes for 
trajectory prediction?

Trajectory Prediction

X

Y

𝑓#$% Predictor

𝐒

%𝐘𝐒
c

𝐒⨁𝐘𝐒

Full cluster

Ground Truth GR
FP GAN

Cluster 1Cluster 2Cluster 3Cluster 4Cluster 5Cluster 6Cluster 7

But still why full cluster SC GAN?

clustering

Mitigate 
mode 

collapse
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RQ4. How to learn data-driven classes for trajectory
prediction?

C4. A study on the most suitable trajectory segment for 
defining a data-driven class in trajectory prediction.
We also noted limitations of current clustering methods 
and proposed SC GAN to address them.

Learning Outcomes
Clusters based on the future and entire trajectory
are the most informative for trajectory prediction. 
SC GAN can cluster trajectories in a deep feature 
space efficiently, overcoming misaligned motion 
patterns and mitigating mode collapse. 

Now, let’s leverage these outcomes to build more accurate 
trajectory predictors conditioned on data-driven classes.

RQ5. How can data-driven classes improve the
prediction of trajectories?

Previously… Next.
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Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

Future Cluster SC GAN - Experiments

How can data-driven classes improve 
the prediction of trajectories?

Trajectory Prediction

X

Y

𝑓#$% Predictor

𝐒

%𝐘𝐒
c

𝐘𝐒

Future cluster

Training settings of a regular GAN-based forecaster4:
Penalize MSE (wL2)
Weighted batch sampler (wB)
Both (wL2 + wB)

For each trajectory in cluster i:

Λ1 = 𝜆234
ADE1

ADE567 + 𝜆834
FDE1

FDE567 + 𝜆39:;.
#1

#=>;6?

Datasets & Class Proportions
THÖR dataset6

3 observable classes: 5 or 6 visitors, 2 workers, 
and 1 inspector

Argoverse dataset7

3 observable classes: autonomous vehicles (av, 
45.4%), regular vehicles (agents, 45.4%), and other
road agents (others, 9.2%)

[4] T. Rodrigues de Almeida, et al., "Context-free Self-Conditioned GAN for Trajectory 
Forecasting," ICMLA ‘22.
[6] A. Rudenko, et al.  “THÖR: Human-robot navigation data collection and accurate motion trajectories
dataset,” RA-L ’21. 
[7] M. -F. Chang, et al. , “Argoverse: 3d tracking and forecasting with rich maps”. CVPR ’19.

clustering



36

Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

Future Cluster SC GAN - Experiments

How can data-driven classes improve 
the prediction of trajectories?

Trajectory Prediction

X

Y

𝑓#$% Predictor

𝐒

%𝐘𝐒
c

𝐘𝐒

Future cluster

Training settings of a regular GAN-based forecaster:
Penalize MSE (wL2)
Weighted batch sampler (wB)
Both (wL2 + wB)

For each trajectory in cluster i:

Λ1 = 𝜆234
ADE1

ADE567 + 𝜆834
FDE1

FDE567 + 𝜆39:;.
#1

#=>;6?

Dataset Cluster ID
(# samples)

Vanilla Ours
wL2

Ours
wB

Ours
wL2+wB

THÖR

9
(23)

1.12 ± 0.03
2.76 ± 0.08

𝟏. 𝟎𝟓 ± 𝟎. 𝟎𝟓
𝟐. 𝟓𝟏 ± 𝟎. 𝟏𝟑

1.12 ± 0.04
2.81 ± 0.14

𝟏. 𝟎𝟒 ± 𝟎. 𝟎𝟔
𝟐. 𝟓𝟏 ± 𝟎. 𝟏𝟏

0
(1003)

0.31 ± 0.01
0.40 ± 0.01

0.32 ± 0.01
0.42 ± 0.02

0.32 ± 0.01
0.42 ± 0.02

0.32 ± 0.02
0.42 ± 0.02

Argoverse
10

(16)
7.18 ± 0.18
18.40 ± 0.42

7.11 ± 0.12
18.23 ± 0.30

7.12 ± 0.06
18.28 ± 0.11

𝟕. 𝟎𝟓 ± 𝟎. 𝟎𝟖
𝟏𝟖. 𝟏𝟑 ± 𝟎. 𝟏𝟗

18
(1542)

0.81 ± 0.02
1.10 ± 0.02

0.81 ± 0.01
1.09 ± 0.03

0.81 ± 0.01
1.09 ± 0.03

𝟎. 𝟖𝟎 ± 𝟎. 𝟎𝟏
𝟏. 𝟎𝟔 ± 𝟎. 𝟎𝟑

Outperform on the 
underrepresented
unsupervised classes.  

Underrepresented are also the 
most complex. Therefore, the 
weight applied to the loss 
function is a good tradeoff.

Results (Top-1 ADE/ Top-1 FDE)

P

P

P

P

clustering
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Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

Future Cluster SC GAN – Generation Results

How can data-driven classes improve 
the prediction of trajectories?

Trajectory Prediction

X

Y

𝑓#$% Predictor

𝐒

%𝐘𝐒
c

𝐘𝐒

Future cluster

Dataset Metric SC GAN vs cGAN

THÖR
ADE -10%

FDE -16%

Argoverse
ADE -7%

FDE -13%

Most challenging cluster in 
THÖR

Four clusters from 
Argoverse

8P!!

8P!"

8P!#

8P"#$%
𝐗⨁𝑃

P
X

clustering
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Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

Multi-stage probabilistic framework5

How can data-driven classes improve 
the prediction of trajectories?

Trajectory Prediction

X

Y

Train

Inference

cDGM

zk

Sk
cDGM1 Nc

Y1

Ŷ

^

Nc
Sk

Sk

zk

c
Sk YSk

Sk ^
Sk

Y

1

23

Yc
Yc

Yc

cluster 1

cluster 3

cluster 2
^

^
^

(3)

(2)

(1)

Predictions Ranking

4

Clustering

𝑝̂+(') =
exp( @

1
𝑚+(') 𝜏)

∑"
*) exp( @

1
𝑚+(*) 𝜏)

Centroids (cent)

Neighbors (neigh)

𝑚+(') is the L2-distance between
prediction’s embeddings and the
centroid of each cluster 𝑐(-).

𝑚+(') is the average L2-distance
between the prediction (sample
or embeddings) to the 𝑁/012
closest neighbors from 𝑐(-).

[5] T. R. de Almeida et
al., "Likely, Light, and
Accurate Context-Free
Clusters-based
Trajectory Prediction”.
ITSC ‘23.
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Robot Perception

Human Motion Trajectories Datasets

Observable Classes

Data-driven Classes

Observable Class Data-driven Class

Car Pedestrian

Class = Car Cluster ID = 3

Trajectory Cues
Position, velocity, 
acceleration, head 

orientation, and 
ongoing action.

Experiments

How can data-driven classes improve 
the prediction of trajectories?

Trajectory Prediction

X

Y

Dataset K-means TS K-means FP SC GAN

THÖR 3 12 7

Argoverse 5 5 5

ETH 5 5 6

HOTEL 5 5 5

UNIV 5 5 7

ZARA1 5 5 4

ZARA2 5 5 4

DBI =
1
𝐾 J

9 $ %

@

max
A B 9

(
𝜎9 + 𝜎A
d(𝜇9, 𝜇A)

)

• 𝜎1 is the average distance from points in 
cluster i.

• d is the Euclidean distance between cluster 
centroids.

Model GAN GAN-OURS VAE VAE-OURS

THÖR 0.57 ± 0.01
1.04 ± 0.03

𝟎. 𝟓𝟑 ± 𝟎. 𝟎𝟏
𝟎. 𝟖𝟒 ± 𝟎. 𝟎𝟑

0.62 ± 0.02
1.05 ± 0.05

𝟎. 𝟓𝟔 ± 𝟎. 𝟎𝟏
𝟎. 𝟖𝟗 ± 𝟎. 𝟎𝟐

Argoverse 1.62 ± 0.07
2.81 ± 0.14

𝟏. 𝟓𝟔 ± 𝟎. 𝟎𝟐
𝟐. 𝟔𝟗 ± 𝟎. 𝟎𝟐

1.96 ± 0.02
3.44 ± 0.06

𝟏. 𝟔𝟐 ± 𝟎. 𝟎𝟐
𝟐. 𝟖𝟐 ± 𝟎. 𝟎𝟒

ETH 0.84 ± 0.03
1.64 ± 0.06

𝟎. 𝟕𝟕 ± 𝟎. 𝟎𝟒
1. 𝟔𝟎 ± 𝟎. 𝟏𝟏

0.94 ± 0.02
1.84 ± 0.04

𝟎. 𝟖𝟐 ± 𝟎. 𝟎𝟐
1. 𝟔𝟎 ± 𝟎. 𝟎𝟒

HOTEL 0.87 ± 0.07
1.64 ± 0.12

0. 𝟖𝟏 ± 𝟎. 𝟏𝟎
1. 𝟒𝟔 ± 𝟎. 𝟏𝟏

1.08 ± 0.04
1.95 ± 0.06

0. 𝟗𝟕 ± 𝟎. 𝟎𝟖
1. 𝟕𝟐 ± 𝟎. 𝟏𝟒

UNIV 0.56 ± 0.01
1.08 ± 0.02

𝟎. 𝟓𝟏 ± 𝟎. 𝟎𝟏
𝟎. 𝟗𝟖 ± 𝟎. 𝟎𝟑

0.61 ± 0.01
1.16 ± 0.01

𝟎. 𝟓𝟔 ± 𝟎. 𝟎𝟏
1. 𝟎𝟔 ± 𝟎. 𝟎𝟐

ZARA1 0.43 ± 0.02
0.82 ± 0.07

𝟎. 𝟑𝟕 ± 𝟎. 𝟎𝟏
𝟎. 𝟕𝟐 ± 𝟎. 𝟎𝟑

0.48 ± 0.01
0.98 ± 0.04

𝟎. 𝟒𝟒 ± 𝟎. 𝟎𝟏
0. 𝟗𝟏 ± 𝟎. 𝟎𝟑

ZARA2 0.46 ± 0.01
0.81 ± 0.05

𝟎. 𝟒𝟎 ± 𝟎. 𝟎𝟏
𝟎. 𝟔𝟓 ± 𝟎. 𝟎𝟑

0.49 ± 0.01
0.86 ± 0.05

𝟎. 𝟒𝟑 ± 𝟎. 𝟎𝟏
0. 𝟕𝟑 ± 𝟎. 𝟎𝟏

Top-3 ADE/FDE

THÖR Argoverse ZARA2

Clustering
method

Ranking 
method

ETH UNIV

K-means
cent

neigh-ds
Neural Net

0.95 ± 0.01
𝟎. 𝟗𝟖 ± 𝟎. 𝟎𝟏
0.93 ± 0.02

𝟎. 𝟖𝟒 ± 𝟎. 𝟎𝟏
0.81 ± 0.01
0.83 ± 0.01

TS K-
means

cent
neigh-ds

Neural Net

0.95 ± 0.01
𝟎. 𝟗𝟖 ± 𝟎. 𝟎𝟏
0.95 ± 0.01

𝟎. 𝟖𝟕 ± 𝟎. 𝟎𝟏
0.82 ± 0.01
0.84 ± 0.01

FP SC GAN
cent

neigh-fs
Neural Net

0.70 ± 0.11
𝟎. 𝟕𝟓 ± 𝟎. 𝟎𝟓
0.69 ± 0.08

𝟎. 𝟔𝟓 ± 𝟎. 𝟎𝟐
𝟎. 𝟔𝟓 ± 𝟎. 𝟎𝟑
0.56 ± 0.03

Accuracy (0-1)
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RQ5. How can data-driven classes improve the prediction of trajectories?

C5. SC GAN to mitigate mode collapse in GAN-based forecasters.
Data-driven classes incorporated in a multi-stage approach using novel predictions ranking methods. 

Learning Outcomes
SC GAN and the tree training settings effectively reduce mode collapsing by lowering the prediction errors in the clusters 
associated with the highest prediction errors.
The multi-stage framework is more accurate than the baselines. The corresponding predictions ranking methods are more efficient 
and sometimes more accurate than neural networks.

Previously…

Ground Truth GR
FP GAN

Cluster 1Cluster 2Cluster 3Cluster 4Cluster 5Cluster 6Cluster 7
Mitigate 

mode 
collapse

Train

Inference

cDGM

zk

Sk
cDGM1 Nc

Y1

Ŷ

^

Nc
Sk

Sk

zk

c
Sk YSk

Sk ^
Sk

Y Yc
Yc

Yc

cluster 1

cluster 3

cluster 2
^

^
^

(3)

(2)

(1)

Predictions Ranking



4. Contributions Overview.
What could this thesis accomplish?

41



Cluster 1Cluster 2Cluster 3Cluster 4Cluster 5Cluster 6Cluster 7
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DecodersEn
co

de
r

𝑺 = (𝒔𝒕)#$%& /𝐘𝐒 = ((𝑥̇# , 𝑦̇#))# $ &(%
*!

𝒄

⊕

𝒄 , Observable class: agent type, activity, etc.

X

Y

X

Y

Data-driven classes Data-driven class detection

Observable classes:
• Can be ambiguous.
• Depend on external perception (“observable”).
• Are explainable and promote safe decision making based on human semantics.
• Deep learning methods struggle on class imbalanced and low data regimes.

Data-driven class:
• Can overfit to the training data.
• Are less explainable.
• Depend on future trajectory to enhance 

trajectory prediction.
• Require detection mechanisms.
• Once detected accurately, are very 

powerful.

[1] T. Schreiter, T.R. de Almeida, et al., THÖR-MAGNI: A large-scale
indoor motion capture recording of human movement and robot
interaction. IJRR ‘24.

[4] T. Rodrigues de
Almeida, et al., "Context-
free Self-Conditioned
GAN for Trajectory
Forecasting," ICMLA ‘22.

[5] T. R. de Almeida et al., "Likely,
Light, and Accurate Context-Free
Clusters-based Trajectory
Prediction”. ITSC ‘23.

[2] T. R. de Almeida, Zhu Y, et al., "Trajectory Prediction for
Heterogeneous Agents: A Performance Analysis on Small
and Imbalanced Datasets”. RA-L ‘24.

[3] T. R. de Almeida, et al., “THÖR-MAGNI Act: Actions for
Human Motion Modeling in Robot-Shared Industrial
Spaces”. HRI ’25.

Actions to augment the state! 
Still observable…

((𝑥# , 𝑦# , 𝑥̇# , 𝑦̇# , 𝑎#))# $ %+

Yc
Yc

Yc

cluster 1

cluster 3

cluster 2
^

^
^

(3)

(2)

(1) Centroids (cent)

Neighbors (neigh)

𝑚+(') is the L2-distance between
prediction’s embeddings and the
centroid of each cluster 𝑐(-).

𝑚+(') is the average L2-distance
between the prediction (sample
or embeddings) to the 𝑁/012
closest neighbors from 𝑐(-).

To model heterogenous trajectory data, we propose 
Trajectory Classes!

/𝐀𝐒 = (𝑎#)# $ &(%
*!



5. Future Work.
Where should we go from here?
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Observable
Classes

Car Pedestrian

Data-driven 
Classes (Ped.)

Cluster 2
Cluster 1

Cluster 3

Data-driven
Classes (Car)

Cluster 2

Cluster 1

Merged Classes

Car 
Cluster 1

Car
Cluster 2

Ped
Cluster 1

Ped
Cluster 2

Ped
Cluster 3

Y

X
Curvature Slowing Down Stopping

C1 C2 C3

Curvature
Straight

Walk (slowing down)

Stopping

Time

C2 C3

6 9 11

Inferred last data-driven label

Ground truth decomposition

Trajectory prediction

Time

C1 C2 C3

Trajectory
Predictor

C1

Hybrid Observable and Data-driven Class Conditioning Time-Granularity in Data-driven Classes

Complementary strengths:
• Observable classes provides

explainability and human
semantics.

• Data-driven classes captures
motion-specific patterns.

Combining observable and data-
driven classes presents an opportunity
to unify semantic interpretability with
motion-based expressiveness.

Current formulation of data-driven
classes overlooks temporal evolution
of motion patterns within a single
trajectory. Temporal decomposition
of data-driven classes aligns
conceptually to the notion of fine-
grained actions enhancing:
• Predictors can identify and respond

to local behaviors such as an
upcoming stop or turning.

• Improved generalization as shorter
segments are more generalizable
across agents and contexts.

• Realism and interpretability by
reflecting the inherently uneven
structure of motion.
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