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Abstract

Robots and other intelligent systems operating in complex, dynamic environ-
ments must anticipate the current and future intentions, activities, and actions
of surrounding agents to navigate efficiently and avoid collisions. Since the
agents’ motion trajectories can represent such intentions, trajectory predic-
tion becomes critical in complex, dynamic environments. However, accurately
predicting human motion remains challenging due to the multitude of envi-
ronmental and agent-specific contextual factors that shape trajectory patterns.
These include semantic information about the scene, agent roles or tasks, social
interactions, physical constraints, and latent behavioral intentions. The com-
plex interplay of these elements leads to heterogeneous trajectories character-
ized by variability in speed, direction, intent, and interaction patterns. Despite
this, many state-of-the-art trajectory prediction models rely on simplifying as-
sumptions, for instance, the absence of stopping behaviors or exclusively social
navigation settings (i.e., multiple agents interacting) and training on homoge-
neous datasets with limited motion diversity. These limitations hinder their
performance in more complex, real-world environments.

A key but underexplored source of trajectory heterogeneity lies in what we
suggest referring to as trajectory classes: groupings of data samples sharing
similar characteristics. These may be based on observable semantic attributes
(e.g., agent type, activity, role) or data-driven latent features learned from the
trajectory data itself. While observable classes can be inferred through visual
perception systems, data-driven classes require learning directly from trajec-
tory data. Both types can capture important motion diversity and enhance
prediction accuracy when integrated effectively into predictors. Despite their
relevance, existing work on trajectory classes lacks both dedicated datasets
capturing heterogeneous motion patterns and methodological approaches ad-
dressing such heterogeneity. This thesis addresses the described gaps by sys-
tematically studying the phenomenon of heterogeneity in human motion, ana-
lyzing its sources, proposing methods to collect heterogeneous trajectory data,
and incorporate trajectory classes (observable and data-driven) into trajectory
prediction frameworks.

To answer the first research question — what types of datasets are needed
to study trajectory classes and how they should be collected — we introduce
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THOR-MAGNI, a large-scale dataset recorded in a mock industrial environ-
ment. The dataset captures a wide range of agent activities and roles (e.g.,
box carriers, groups of people), which can be seen as observable classes, and
provides detailed annotations for analyzing these classes in the context of hu-
man trajectory prediction. Its complexity and diversity also make it well-suited
for learning and analyzing data-driven trajectory classes. We leverage THOR-
MAGNTI to study the influence of trajectory classes, reflecting underlying hu-
man activities or roles in industrial contexts, on trajectory prediction.

This thesis primarily investigates both observable and data-driven trajec-
tory classes as mechanisms to improve prediction accuracy. For observable
classes, we ask: How can observable classes be leveraged to enhance trajectory
prediction? We extend deep learning models to explicitly and efficiently incor-
porate observable classes. We evaluate their performance on THOR-MAGNI
and a state-of-the-art imbalanced outdoor dataset. Unlike previous approaches,
our models do not require class-specific modules, making them inherently more
scalable and memory-efficient. We also demonstrate that pattern-based ap-
proaches, such as Maps of Dynamics, outperform deep learning models in
low-data and class-imbalanced regimes, which are present in robotics, particu-
larly in cold-start settings where robots operate with minimal prior knowledge.
However, observable classes can be ambiguous due to their static assignment
of a single label to all trajectories of a given agent. This assumption is some-
times disregarded in real-world settings, where a single agent may perform
diverse behavioral patterns. To address this limitation, we extend the THOR-
MAGNI dataset with fine-grained, frame-level action annotations, resulting in
THOR-MAGNI Act. By leveraging this enriched dataset, we demonstrate that
frame-based action labels provide strong contextual cues. When integrated
through direct conditioning or multi-task learning frameworks that jointly
model trajectories and action sequences, actions help disambiguate static class
assumptions and improve prediction accuracy. In particular, augmenting the
state representation with frame-level action signals mitigates the limitations
of static observable classes by capturing intra-agent behavioral variability.

For data-driven classes (those not directly observable), we first investigate
how to learn them effectively from trajectory data in the context of prediction
tasks. To this end, we propose a novel deep generative framework inspired
by self-conditioning techniques from image modeling. Our Self-Conditioned
generative model learns trajectory clusters that are intrinsically linked to the
generative process itself, allowing these clusters to hold privileged information
to guide and enhance the training of downstream predictors. Unlike traditional
clustering methods, which often fail to capture minority patterns, our approach
more effectively identifies less dominant classes, such as the stopping behavior,
improving prediction accuracy across underrepresented trajectory modes. We
further integrate these learned classes into a multi-stage prediction framework,
where the trajectory classes explicitly condition generative models, leading to
more accurate and probabilistically informed predictions.
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In summary, this thesis provides a comprehensive investigation of the phe-
nomenon of heterogeneity in human trajectory data. It presents methods to
analyze natural motion variability, identify meaningful trajectory clusters,
quantify their influence on prediction accuracy, and develop mechanisms to
integrate this information into deep learning-based predictors. Together, these
contributions support more accurate, robust, and context-aware prediction
methods for robotics and intelligent systems operating in dynamic human en-
vironments.
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Chapter 1

Introduction

The future is not set. There is no fate but what we make for ourselves.
— John Connor, Terminator 2

Autonomous mobile robots have emerged as essential resources across sev-
eral sectors of society, demonstrating substantial impact and transformative
potential. In industrial environments, these systems facilitate efficient material
transport and engage in complex collaborative tasks with human operators and
other robotic units. In transportation, advanced driver-assistance systems har-
ness intelligent features to enhance safety and improve the driving experience.
In domestic settings, service robots are increasingly deployed to assist with
activities of daily living while also addressing psychosocial needs, particularly
among elderly populations.

Two fundamental aspects of these autonomous systems are their capabili-
ties for navigation and human interaction within dynamic, complex, and an-
thropocentric environments. These capabilities require the integration of ad-
vanced perception and decision-making to ensure safety and effectiveness and
leverage contextual awareness. Consequently, autonomous mobile robots must
adapt to dynamic conditions, account for human unpredictability, and adhere
to both explicit rules and implicit social norms, all while operating under real-
time constraints.

Robots operate and share space with numerous dynamic agents in anthro-
pocentric environments whose behaviors are shaped by a complex interplay
between internal and external factors. Internal factors encompass an agent’s
intrinsic characteristics, such as activities, intentions, goals, and preferences.
External factors, conversely, arise from the environment and include obsta-
cles, semantically meaningful regions, and the presence and behavior of other
agents. Autonomous mobile robots, equipped with advanced sensing and in-
ference capabilities, can detect these external factors and infer certain inter-
nal factors, using this information to analyze the trajectory patterns of other



2 CHAPTER 1. INTRODUCTION

Trajectory Classes
/ Observable Data-driven
Classes Classes
X /\/R
R e |

A
aﬁ“ﬁam AN/

Externally defined by Emerge from motion
appearance, role, or task. trajectory patterns. Offer a
Interpretable and rely on latent structure and do not

upstream perception and class rely on upstream
detection. observable class detection.

Figure 1.1: Trajectory classes can be derived from observable semantic at-
tributes (left) and data-driven structures (right). The former can be estimated
using external perception systems, while the latter can be found directly from
the trajectory data.

agents. These factors influence measurable motion features, or trajectory cues,
such as velocity, orientation, acceleration, and trajectory efficiency. Under-
standing and modeling the variability of these cues is crucial for anticipating
future behaviors and ensuring safe and coordinated robot actions.

This thesis addresses the fundamental challenges of discovering and mod-
eling trajectory heterogeneity, a complex phenomenon arising from the afore-
mentioned influencing factors. Rather than treating all moving agents as ho-
mogeneous as in most prior works, this work emphasizes the importance of
heterogeneity represented as trajectory classes, which group trajectories based
on perceived appearance or trajectory cues. These classes can originate from
two primary sources: observable classes, defined by human semantics and acces-
sible via perception systems, and data-driven classes, which are automatically
learned from the structure and dynamics of the trajectory data (see Fig. 1.1).

Observable classes are human-interpretable labels that can be inferred
through the robot’s perception stack using sensors such as cameras or lidars.
Common examples include agent types like pedestrian, cyclist, or car in traf-



fic environments [97], or task-based roles such as object carrier or wisitor in
industrial contexts [86]. In some applications, such as airport environments,
observable classes may include demographic categories like child, elderly, or
adult [61]. The advantages of observable classes include interpretability, ex-
plainability, and the ability to support rule-based decisions, such as adapt-
ing a robot’s motion policy near explicitly defined vulnerable users. However,
they also have limitations: semantic ambiguity (where the same class contains
diverse trajectory patterns or different classes contain the same trajectory
pattern), dependency on perception accuracy, and the high cost of manual an-
notation. It is also possible to perceive additional state information to mitigate
semantic ambiguity, such as the observed per-frame actions of the agents. Ac-
tions describe the agent’s activity at each time step (e.g., picking up an object,
carrying, stopping, or moving). Yet, these actions also depend on perception
modules and may not always be reliable or available in all environments.

In contrast, data-driven classes offer a complementary approach by iden-
tifying structure directly from motion trajectories without relying on prior
semantic labels. Data-driven classes group trajectories according to shared
dynamics, such as displacement patterns, acceleration, curvature, or veloc-
ity profiles. Therefore, these classes are particularly valuable when semantic
observable labels are unavailable, noisy, or fail to align with actual motion
patterns. Moreover, they can capture subtle variations in behavior that may
not be easily discernible through human-defined observable classes, such as the
stopping behavior. Nevertheless, the main trade-off is interpretability: while
such classes reflect meaningful movement patterns, they do not always corre-
spond to intuitively understandable or semantically grounded concepts.

Understanding and predicting the dynamics of diverse moving agents is cen-
tral to the safe navigation of autonomous mobile robots and effective human-
robot interaction. In this thesis, we view human behavior through the lens
of trajectory patterns, which are structured data representations that describe
how agents move through space and time. By developing accurate and efficient
models to classify and predict future trajectory patterns of other dynamic
agents, autonomous systems can be integrated seamlessly into human-centric
environments.

Studying such patterns in real-world scenarios requires access to hetero-
geneous trajectory datasets, which reflect the variability of human behavior
and environmental complexity. To support such studies, this thesis introduces
THOR-MAGNI, a large-scale dataset comprising weakly-scripted scenarios in
which humans and a mobile robot navigate, interact, and perform tasks in a
mock industrial setting. To further enable action-aware prediction, we extend
the dataset to include manually annotated, frame-level action labels from ego-
centric video, resulting in THOR-MAGNI Act. These resources allow us to
study the impact of trajectory classes and augmented input states with fine-
grained actions on trajectory prediction. To that end, we propose machine
learning methods to both learn data-driven trajectory classes and integrate
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trajectory classes, whether observable or learned, into predictive models as
shown in Fig. 1.2.

Machine learning, particularly its subset deep learning, has revolution-
ized numerous domains in computer science and beyond. In computer vi-
sion, these techniques have enabled unprecedented advancements in object
detection, recognition, and scene understanding, enhancing the capabilities of
perception systems. Similarly, in natural language processing, deep learning
has facilitated the development of applications such as neural machine trans-
lation, sentiment analysis, and context-aware text generation. These break-
throughs stem from the remarkable ability of deep learning architectures to
automatically extract and learn hierarchical, complex representations from
vast amounts of high-dimensional data. This capacity for representation learn-
ing has led to improvements in the performance and generalization of models
across a broad spectrum of real-world tasks. Motivated by these successes, this
thesis builds and compares deep learning-based frameworks for analyzing het-
erogeneous human trajectory datasets, enabling both the capture of underlying
structures and the development of class-aware, accurate prediction models.

In summary, this thesis addresses a fundamental challenge in the trajec-
tory prediction domain: modeling trajectory heterogeneity through observable
and data-driven classes. It presents a comprehensive study spanning from data
collection strategies designed to capture complex human motion patterns in-
fluenced by contextual factors to machine learning frameworks that infer tra-
jectory classes directly from data. By critically revisiting the role of trajectory
classes in the prior art, this work introduces novel methodologies and research
directions, overcoming the limitations of prior approaches, particularly the lack
of contextual cues related to the target agent and its motion trajectories. Ulti-
mately, this thesis advances the understanding of how semantically grounded
abstractions and data-driven representations can be leveraged to improve the
accuracy and robustness of trajectory prediction in dynamic, human-centered
environments.

1.1 Notation and Terminology

Throughout this thesis, the following general conventions for mathematical
notation will be consistently applied.

e Scalars are denoted by lowercase letters a, b, ¢, d.

e Sets are denoted by uppercase calligraphic letters, e.g. A, B, C. The
cardinality of a set A is denoted by |.A|. Indexed sets are concisely ex-
pressed as A = {a;}7;, and when the cardinality is either unspecified
or irrelevant, the indexing is written as A = {a;};.

e Functions are denoted by letters and always shown with their arguments,
e.g., f(x). For families of functions, we use subscripts, e.g., fy, to indicate
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Figure 1.2: Integrating trajectory classes for trajectory prediction. Top to
bottom: Human motion trajectories arise in diverse environments, such as
road scenarios and industrial settings. Autonomous robot perception systems
detect other agents and infer high-level semantic categories, resulting in ob-
servable classes (e.g., Pedestrian, Car). Alternatively or in parallel, data-driven
classes are learned offline by clustering raw trajectory patterns based on their
dynamic characteristics. Trajectory cues, such as position, velocity, accelera-
tion, head orientation, and ongoing actions, are extracted from observed tra-
jectories and can serve as inputs for class identification and trajectory pre-
diction. Dashed arrows indicate observable classes detection steps, which we
do not cover in this work. Integrating both observable and data-driven classes
enriches the contextual understanding and improves the accuracy and robust-
ness of future trajectory prediction.
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parametrization or relationship with the subscript. We also use Newton’s
notation for derivatives with respect to time, where the first derivative
of function f is represented by f, while the second derivative is denoted

by f.
Vectors are denoted by bold lowercase letters, e.g., v.
Matrices are denoted by bold uppercase letters, e.g. M.

Matrix elements are indicated using bracket notation; for example, [M]; ;
denotes the element in the i-th row and j-th column of matrix M.

When defining vectors and matrices, their dimensions are often stated
explicitly. For example, a matrix M with n rows and m columns over
the real numbers is denoted as M € R™*"™,

We refer to the Frobenius or Euclidean norm of a vector v as ||v||r.

We denote the prior probability of an event by P(.) and the probability
of an event conditioned on a different event as P(.|.).

We denote distributions by lowercase Greek letters, e.g., €.

In addition, the thesis uses consistent symbols for recurring concepts:

Subscripts are frequently used to indicate relationships between differ-
ent mathematical objects; for instance, Yg denotes a matrix Y that is
associated with the matrix S in some way.

We use the subscript ¢ to indicate time steps, e.g. s; and s;y1.

A 2D position at time step ¢ of a trajectory is referred to by the bold
lower case vector p; = (x,y). Therefore, a 2D velocity vector at time
step t of a trajectory is referred to by vy = (&,9).

We denote latent vectors as z.

Predicted or estimated objects are denoted using 7, e.g. Y.

To establish a foundation for the rest of this thesis, we now define key
terminology and concepts. The term training or validation trajectory dataset
refers to a collection of trajectories represented as a 3D tensor (i.e., all tra-
jectories are of equal length), where the first axis corresponds to the number
of trajectories, the second to the time steps, and the third to the state repre-
sentation of a dynamic agent (see Fig. 1.3). A trajectory represents a dynamic
agent’s position profile, typically in a two-dimensional plane, over a given pe-
riod. An agent refers to any observable dynamic object whose position is being
tracked, such as humans, mobile robots, human-driven vehicles, autonomous



1.1. NOTATION AND TERMINOLOGY 7

>— Trajectories

< | N I I N N _J
%~

Time steps

Figure 1.3: 3D tensor representation of a trajectory dataset, where the first
axis indexes the individual trajectories, the second axis corresponds to the
time steps, and the third axis represents the trajectory state dimensions.

vehicles, or cyclists, whose states can be computed. An agent’s states are de-
rived from its tracked trajectory cues, such as position and head orientation,
and may include additional time-varying attributes like velocity, acceleration,
or actions. Each agent may belong to an observable class, which characterizes
the agent type (e.g., pedestrian or car in a road scenario [97]) or the agent’s
ongoing activities (e.g., transporting an object in an industrial setting [86]).
In this case, all trajectories of an agent belong to the same class. Moreover, a
trajectory may belong to a learnable class denoted by data-driven class, which
relies on unsupervised trajectory cues processing [25]. An agent can also per-
form fine-grained actions, which may or may not be unique to its class and
form part of its state as they vary over time.

Trajectory prediction or forecasting involves estimating future states, po-
tentially with a different configuration from the observed states, based on past
state observations and relevant contextual information, such as the locations
of other agents or obstacle maps. The prediction spans a predefined prediction
horizon, which is the period from the last observed time step to the final point
in time for which predictions are made. We use the terms observed trajec-
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tory and tracklet interchangeably to refer to the sequence of observed states.
A tracklet spans a predefined observation horizon, which covers the period
from the first time step to the last observed time step. Joint trajectory and ac-
tion prediction involves predicting both future trajectories and the sequence of
future actions simultaneously. Class-conditioned trajectory prediction or fore-
casting involves trajectory prediction conditioned on the corresponding class.
Action-conditioned trajectory prediction or forecasting refers to trajectory pre-
diction where the observed states include the observed sequence of fine-grained
actions. Multi-task trajectory and action prediction or forecasting refers to the
joint prediction of future trajectories and action sequences, where the observed
inputs may optionally include the sequence of observed fine-grained actions.

1.2 Problem Formalization

Dynamic agents generate trajectory data, each denoted as A; and associated
with an observable class ca,. Agent trajectories are converted into tracklets
of fixed-length S = (s;)?,. The states s;, depending on the dataset, tra-
jectory modeling task, and predictive model, may consist of various config-
urations: only 2D velocities s; = (&, 9:); 2D positions and velocities, i.e.,
st = (x4, Yt, T4, Y¢); or including the action ay, i.e., sy = (¢, yt, Tt, Ut, ar). Ac-
tion labels represent an agent’s fine-grained actions at each time step from a
predefined set of actions A. In contrast to observable classes, which remain
constant for all trajectories of an agent, action labels can vary at each time
step, influencing human trajectory and capturing its heterogeneity. The fu-
ture of an observed tracklet consists of 2D velocities, Yg = ((@, y't))tTZPO 4 of
length L = Tp — O, which are subsequently converted into future positions
Pgs. The future sequence of actions temporally aligned with Yg is denoted by
ag = (at)?jo+1, a; € A. This thesis builds on and extends these foundational
notations across various trajectory modeling tasks, including:

e Canonical trajectory prediction (TP) [80].

e (lass-conditioned trajectory prediction using either observable classes
(O-TP) [27] or data-driven classes (D-TP).

e Action-conditioned trajectory prediction (A-TP) and joint trajectory
and action prediction (TAP) [81].

Fig. 1.4 illustrates the different trajectory prediction tasks, while Fig. 1.5 de-
picts the joint trajectory and action prediction task.
1.2.1 Trajectory States Representation

As previously described, the agent state at time step ¢, denoted by s;, can
be configured in various ways depending on the predictive model, the avail-
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Figure 1.4: Trajectory prediction tasks, where black dots represent the ob-
served trajectory, and colored arrows depict possible future trajectories. Top
left: The canonical trajectory prediction task (TP) predicts the possible
future(s) based solely on the observed trajectory. Top right: The action-
conditioned trajectory prediction task (A-TP) incorporates observed actions at
each time step into the input state to enhance predictions. Bottom left: The
observable class-conditioned trajectory prediction task (O-TP) conditions the
trajectory predictor on the agent’s observable class. Bottom right: The data-
driven class-conditioned trajectory prediction task (D-TP) leverages learnable
trajectory classes derived from data as conditioning inputs for more informed
predictions.
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Figure 1.5: Joint Trajectory and Action Prediction (TAP) task: given the ob-
served trajectory, observable class, and fine-grained actions augmenting the
observed trajectory, the task involves simultaneously predicting the future tra-
jectory and the corresponding sequence of fine-grained actions.

able data modalities, or the application. These configurations can be broadly
categorized into environment-agnostic and environment-aware representations.

Environment-agnostic features are derived solely from the agent’s trajec-
tory and do not explicitly encode contextual information about the surround-
ing environment. In this thesis, we explore displacements, i.e., finite differ-
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Figure 1.6: Trajectory normalization steps. Left: Raw trajectory. Center:
Trajectory translated to the origin based on the pivot point at the 8" time step.
Right: Translated trajectory rotated to align the first displacement vector
with the X-axis.

ences of 2D positions, capturing local motion between successive time steps;
velocities, which are the first derivatives of positions (i, 9;); and normalized
trajectories, where each trajectory is translated to the origin and rotated to
align with the X-axis (see Fig. 1.6).

In contrast, environment-aware features encode spatial and social con-
text in which the agent operates, such as the absolute positions representing
the agent’s spatial coordinates in a global or scene-specific coordinate frame
(z¢,yt). Alternatively, one can use semantic maps or visual inputs represent-
ing the spatial layout of the environment, which can be encoded as a 2D
occupancy grid, 3D point cloud, or a semantic map. In addition, social dis-
tances or other agents’ relative positions can also be used to model the other
agents in the environment. These are critical in dense or interactive scenarios,
where surrounding agents shape an agent’s behavior. A typical formulation in-
cludes pairwise Euclidean distances to nearby agents or social pooling features
summarizing their influence [51].

In summary, the design of s; plays a central role in trajectory prediction
models, as it drives the type and granularity of trajectory cues available for
forecasting. While environment-agnostic features enable generalization across
scenes and tasks, environment-aware features provide important context for
interaction modeling and spatially grounded behavior. This thesis focuses pri-
marily on environment-agnostic features while considering absolute spatial co-
ordinates as the environment-aware representation.

1.2.2 Unimodal and Multimodal Trajectory Prediction

Trajectory prediction methods can be categorized as unimodal or multimodal,
depending on how they model the inherent uncertainty of future trajectories.

Unimodal or single-output prediction methods produce a single most likely
future Yg given the observed states S. These models assume that future tra-
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jectories follow a single path, which may not always be the case, especially in
semantically rich and dynamic environments where an agent may have multiple
plausible futures. While effective in structured environments or short horizons,
unimodal predictors fail to capture the stochasticity of human behavior, lead-
ing to overly smooth or averaged predictions.

Multimodal or multiple-output prediction methods address this limitation
by generating multiple future trajectories Yé,Y%,,Yé{ or sample from
a learned distribution P(Yg|S). Multimodality is typically achieved through
stochastic generative models such as Variational Autoencoders (VAEs) and
Generative Adversarial Networks (GANs). Generative frameworks model the
distribution of future trajectories, allowing for the generation of diverse, plau-
sible trajectories.

In this thesis, we investigate both single- and multiple-output predictors.
Single-output approaches comprise Long Short-Term Memory (LSTM) [41]
and Transformer [93] networks, and we consider them in the context of observ-
able class- and action-conditioned trajectory prediction and multi-task learn-
ing models. We also study multiple-output frameworks, such as VAEs [48] and
GANSs [36], to capture the diversity of human motion patterns and support
probabilistic inference for class-conditioned trajectory forecasting.

1.2.3 Performance Metrics

To evaluate trajectory predictions, we use the Top-K Awverage and Final Dis-
placement Errors, as in [85, 51]. Top-K Average Displacement Error (Top-K
ADE) measures the average ¢ distance between the ground truth track and
the closest prediction (out of K samples):

Tp
. 1 . (k)
Top-K ADE = — E — P 1.1
op ke{rlrf.l.r.l,K} Lj:OH”pJ P; 2, (1.1)

where p; is the ground truth position at time step j and f)§k) the correspond-

ing prediction for the k** generated sample. Top-K Final Displacement Error
(Top-K FDE) measures the distance between the last predicted position and
the corresponding ground truth position:

Top-K FDE = i —p 1.2
op ke{qnnK}llpr P2, (1.2)

yeeey

where pr, is the last ground truth position and pr, the corresponding pre-
diction for the k' generated sample. When K = 1, we interchangeably refer
to Top-1 ADE and Top-1 FDE as ADE and FDE, respectively.

Furthermore, we use accuracy (ACC) and F1 score (F1), both € [0,1]
for action prediction scores and trajectory classification. Accuracy represents



12 CHAPTER 1. INTRODUCTION

the proportion of correct action predictions relative to the total number of

instances:
Tp

ACC = % S Ko =ay), (1.3)
j=0+1
where a; and a; are the predicted and ground-truth action labels at time step
J, and W[] is the indicator function. F1 score calculates the harmonic mean
of precision and recall, providing a more balanced measure of the model’s
performance:

Precision - Recall

F1=2- 1.4
Precision + Recall (14)
TP TP
Precision = m Recall = m,

where TP, FP, and FN denote the number of true positives, false positives,
and false negatives.

For any trajectory clustering task, we use the Davies-Bouldin Index (DBI) [24]
to select the number of clusters. DBI evaluates clustering quality based on
intra-cluster compactness and inter-cluster separation:

K
1 o;+0;
DBI:—% max | — |, 1.5

K~ j# (d(ll‘ivuj)> (15)

where o; is the average distance from points in cluster i to its centroid, and
d(-,-) is the euclidean distance between cluster centroids. The lower the aver-
age similarity is, the better the clusters are separated and the better the result
of the clustering performed. To evaluate the separation between clusters, we
compute the average similarity between cluster centroids. A lower value indi-
cates better-separated clusters. Therefore, we search for the optimal number
of clusters € [2,50] and select the one with the lowest DBI.

1.3 Research Questions and Contributions

The central contribution of this thesis is to demonstrate how observable and
data-driven classes can be effectively used to analyze and predict human tra-
jectory data. To achieve this, we adapt and propose advanced deep learning
frameworks based on state-of-the-art architectures, including Long Short-Term
Memory [41], Transformer [93], Variational Autoencoder [48], and Generative
Adversarial Network [36]. We run those methods in outdoor settings, road
scenarios, and industrial environments. By integrating deep learning methods
conditioned on trajectory classes, this thesis aims to show that these attributes
are powerful cues for trajectory analysis. This overarching objective requires
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developing and disseminating comprehensive, meaningful datasets of hetero-
geneous trajectory data, the creation of advanced trajectory predictors that
incorporate both observable and data-driven class labels, and the implemen-
tation of robust evaluation and validation methodologies. These requirements
collectively lead to the main research goal of this thesis:

Research Goal

How can observable and data-driven classes be effectively used to an-
alyze and predict human trajectory data?

As discussed earlier, trajectory classes can be imposed through external
perception, which may or may not be available (observable classes) or de-
rived from trajectory data (data-driven classes). To conduct a comprehensive
study of both sources, it is imperative to use datasets that contain complex,
meaningful scenarios featuring heterogeneous agents with distinct trajectory
patterns. In the domain of road scenarios, propelled by advancements in au-
tonomous driving research, several datasets align with our requirements, such
as the Stanford Drone Dataset (SDD) [79], Argoverse [97], and TITAN [69].
These datasets feature heterogeneous road agents (e.g., cars, pedestrians, cy-
clists) coexisting in shared spaces, each showing different trajectory patterns
and labeled accordingly. In contrast, for industrial environments, the THOR
dataset [83] stands as the sole dataset potentially meeting our criteria. It pro-
vides accurate position tracking of heterogeneous agents in a mockup indoor
industrial environment. However, THOR’s limited scope (approximately 60
minutes of trajectory data from 9 participants) constrains its applicability for
training and generalizing data-intensive learning-based approaches [80]. This
limitation underscores a gap in the literature: the scarcity of comprehensive,
labeled, and heterogeneous trajectory datasets for industrial environments,
which leads to the first research question:

Research Question 1

What datasets are needed to study heterogeneity in human trajecto-
ries, and how to collect them?

Building on the protocol established in [83], we propose the first contribu-
tion of this thesis:
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Contribution 1

A comprehensive and labeled trajectory data collection of weakly
scripted scenarios featuring both humans and a robot navigating and
interacting within the environment called THOR-MAGNI. A subset of
this dataset is specifically designed to study the influence of observable
classes on trajectory patterns. These classes encompass participants
moving individually, in groups, and transporting various object types
associated with distinct trajectory characteristics.

THOR-MAGNI addresses the limitations of its predecessor (THOR) by
including over 3.5 hours of trajectory data from 40 participants. Addition-
ally, it includes sensor data recorded by a mobile robot, eye-tracking videos,
and gaze vectors aligned with the corresponding trajectories. A subset of the
data collection, totaling 1.5 hours of trajectory data, is specifically designed
to study the impact of observable classes on human trajectory prediction. In
this portion of the dataset, participants assume two primary roles, visitors and
industrial workers, while co-navigating with a mobile robot that may be static
or moving in the environment. These roles are tailored to industrial tasks, such
as navigating alone, moving in groups of varying sizes, and transporting dif-
ferent objects. This heterogeneous social setting provides a novel framework
for analyzing the influence of specific industrial roles on human trajectories.

The role of observable classes in trajectory prediction is underexplored,
particularly in the context of mobile robots operating in dynamic environ-
ments, as human trajectory datasets with class or activity labels remain rare,
as demonstrated in the first contribution. THOR-MAGNI now enables the
study of trajectory prediction methods that incorporate observable classes,
leading to the second research question:

Research Question 2

How can observable classes improve trajectory prediction?

Existing methods for trajectory prediction of heterogeneous agents, often
tailored for autonomous driving, do not transfer well to robotics settings, as
they depend on domain-specific contextual features [14]. Additionally, robotics
applications pose unique challenges, such as the cold-start scenario, where a
robot navigates previously unseen environments with limited data [23]. More-
over, both robotics and autonomous driving domains often face imbalanced
data (i.e., non-uniform class distributions), which can degrade the performance
of deep learning-based trajectory prediction methods [80]. Hence, it is impor-
tant to understand whether class-conditioned prediction methods can offer
benefits in applications with scarce or imbalanced data. Additionally, under-
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standing the extent of these benefits and the conditions under which they are
most effective forms the basis of the second contribution of this thesis:

Contribution 2

A comprehensive performance analysis of class-conditioned trajectory
prediction methods on small and imbalanced datasets for heteroge-
neous agents. We propose a set of efficient deep learning baselines and
evaluate their performance on both robotics and outdoor datasets
(THOR-MAGNTI and the Stanford Drone Dataset) against pattern-
based approaches based on Maps of Dynamics.

For this in-depth study of class-conditioned trajectory prediction meth-
ods under different conditions, we adapt several deep learning methods to
include class labels. Unlike previous methods [67, 33, 72|, our proposed deep
learning approaches are both memory and energy-efficient, as they do not re-
quire training or running individual modules per class. We evaluate their per-
formance across diverse training conditions, considering balanced and imbal-
anced datasets with uniform and non-uniform class distributions and varying
amounts of training data. Moreover, we also compare the deep learning base-
lines against CLiFF-LHMP [107], which uses Maps of Dynamics [56] (MoD),
and to its extension incorporating observable classes. Our experiments show
that all methods benefit from including class labels, improving prediction ac-
curacy in most settings. More importantly, we observe differences when learn-
ing from imbalanced datasets or in environments where sufficient data is not
available. In particular, we find that deep learning methods perform better on
balanced datasets. However, in applications with limited data, e.g., the cold
start of a robot in a new environment or imbalanced classes, pattern-based
methods may be preferable.

As demonstrated in the second contribution, observable classes provide
valuable cues for enhancing trajectory prediction in autonomous driving and
robotics environments. However, agents within the same class may engage in
diverse activities, each influencing their trajectory patterns differently. As a
result, a single agent class can encompass a wide range of motion behaviors, re-
quiring fine-grained representations to mitigate such ambiguities. Fine-grained
actions can offer more specific and detailed information about the dynamics
of trajectory data. Furthermore, in addition to trajectory prediction, action
prediction is crucial for ensuring safe and reliable human-robot interactions
in dynamic mobile robots environments, such as those in THOR-MAGNI. A
mobile robot interacting with a human operator needs to not only predict
the operator’s future positions but also anticipate their future actions. La-
beled frame-based actions are also a rare feature in existing human trajectory
datasets, especially in dynamic environments involving mobile robots, leading
to the third research question:
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Research Question 3

How can frame-based actions improve trajectory prediction?

As described in the first contribution, the activity labels in THOR-MAGNI
are limited to the static roles of each participant (referred to as observable
classes), representing a broad activity assigned to the participant for the du-
ration of the experiment. To better describe activities and the associated tra-
jectory patterns using fine-grained actions, we propose a substantial extension
of THOR-MAGNTI as our third contribution:

Contribution 3

The THOR-MAGNI Act dataset includes 8.3 hours of manually la-
beled participant actions derived from egocentric videos recorded via
eye-tracking glasses. These actions, aligned with the trajectory cues
provided in THOR-MAGNI, enable the exploration of more predic-
tion tasks, such as action-conditioned trajectory prediction and joint
action and trajectory prediction.

Building on the existing observable classes in the THOR-MAGNI dataset,
THOR-MAGNI Act defines a set of 14 unique action labels. Each agent class is
associated with specific actions, while some actions are shared across different
agent classes. Importantly, while an agent class remains constant across all
trajectories of a particular agent, an action can vary at each time step. As
a result, this data extension provides finer granularity in labeling internal
factors, such as goal-driven actions, that can influence human trajectory. We
demonstrate the utility of THOR-MAGNI Act for two trajectory modeling
tasks: action-conditioned trajectory prediction, and joint action and trajectory
prediction. To address these tasks, we propose two deep learning-based models
that outperform baseline class- and actions-unaware methods with minimal
increases in the number of parameters.

While observable classes and fine-grained actions provide powerful cues for
enhancing trajectory predictions, they depend on an advanced perception stack
to detect these cues accurately. Also, observable classes from human annotators
can be ineffective in representing similar groups of trajectories. In such cases,
using observable class labels may be detrimental to the trajectory prediction
task, mainly when different classes include similar trajectory patterns [27].
Alternatively, data-driven classes do not rely on upstream perception systems
and are less ambiguous representations, as they are solely derived from the
trajectory data itself. However, due to the inherent complexity of trajectory
data, identifying meaningful groups of trajectories (clusters) that hold valuable
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information for trajectory prediction presents a major challenge. Thus, we pose
the fourth research question as follows:

Research Question 4

How to learn data-driven classes for trajectory prediction?

We first comprehensively study traditional clustering methods, such as K-
means [66] and Time-Series K-means [91], and different input states to address
the complexity of discovering meaningful data-driven classes within trajectory
data for the trajectory prediction task. We find that different input states (e.g.,
displacements or normalized trajectories) and the part of the trajectory that
is clustered (observation, future, or entire trajectories) lead to different clus-
ter formations and, consequently, affect further trajectory predictions. Specif-
ically, we find that clustering based on future or full trajectory states leads
to more informative representations for the prediction task. Moreover, tradi-
tional clustering methods face algorithmic limitations, such as the Euclidean
distance metric being unsuitable for flattened time-series data in the case of
K-means or the high computational cost associated with Time-Series K-means.
To overcome these limitations, we propose a novel approach that leverages a
GAN to learn meaningful data-driven classes from a deep feature space and
embeds this task within a trajectory generation framework. Consequently, we
assess the quality of the derived clusters through their impact on prediction
performance. To this end, we propose a GAN-based framework as our fourth
contribution:

Contribution 4

A Self-Conditioned GAN (SC GAN) designed to produce clusters of
embeddings that encapsulate similar trajectory patterns. The mean-
ingfulness of these clusters is validated by leveraging their information
to enhance the learning process of separate trajectory predictors.

Drawing from advancements in the computer vision domain, we adapt the
Self-Conditioned GAN framework [64] to the trajectory generation task, en-
abling the learning of meaningful embeddings directly from trajectory data.
GANSs aim to reconstruct the generative process of the underlying data dis-
tribution through two primary neural networks: a generator and a discrim-
inator. The generator’s objective is to produce realistic samples, while the
discriminator is tasked with distinguishing between real and generated sam-
ples. Self-Conditioned GAN clusters the discriminator’s feature space, and the
generator is conditioned on the corresponding cluster identifiers. To evaluate
the quality of these clusters, we focus on the SC GAN’s predictive performance
conditioned on the corresponding generated clusters.
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While Self-Conditioned GAN enhances the model’s exposure to trajectory
diversity, it also introduces a novel research challenge: as the learned clus-
ters are derived from future trajectories, they cannot be directly used during
inference. We refer to predictors conditioned on future insights as the set of
predictive approaches using data-driven classes that rely on future trajectory
states. Although such predictors can not be used in practice, they contain
privileged and insightful information that can be leveraged to train and im-
prove other predictors, as demonstrated in [80]. This characteristic highlights
a key opportunity for new predictive frameworks that exploit privileged in-
formation at training time but require mechanisms to infer or approximate
cluster assignments at test time, which leads to the fifth research question:

Research Question 5

How can data-driven classes improve the prediction of trajectories?

For data-driven classes to be effectively integrated into trajectory predic-
tion, these classes must either be based on the observed tracklet or inferred
from future trajectory states. Using observed tracklets is a natural alternative
to observable classes as they can be easily detected during inference, but they
alone do not introduce novel meaningful information to the prediction task,
as the trajectory predictor already processes the observed data. In contrast,
future or entire trajectory-based clusters offer a forward-looking perspective.
However, they can only be induced implicitly or may require a mechanism
to assign clusters during inference, as the future trajectory is not available
then. Focusing on the former case, SC GAN provides meaningful information,
including the most representative cluster or associated cluster with the worst
prediction performance. The intuition is that this information can guide better
downstream predictors.

Furthermore, we also study efficient and effective mechanisms for including
explicit cluster class conditioning in predictive systems instead of retraining
an additional trajectory predictor from scratch based on assumptions from
SC GAN’s clustering space. Hence, focusing on methods for implicit and ex-
plicit cluster class conditioning based on future or entire trajectory states, we
propose the fifth contribution:
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Contribution 5

Two deep learning frameworks that leverage future- and full-driven
clusters for trajectory prediction. The first stands for training strate-
gies that aim at enhancing the learning of a broader spectrum of fu-
ture trajectories based on their complexity and representativeness in
SC GAN'’s clustering space. The second is a multi-stage probabilistic
framework that conditions trajectory predictors on entire trajectory-
based clusters and requires an additional mechanism to assign proba-
bilities to the predictions during inference.

GANS often fail to model the whole space of the input data, suffering from
the so-called mode collapse problem, where the models can only recover the
data’s most representative modes (i.e., most common trajectory patterns).
Since SC GAN’s clusters are based on future trajectories’ states, we have ac-
cess to each cluster’s prediction errors and corresponding representativeness.
Building on this information, we first introduce three training strategies based
on the SC GAN'’s clustering space that encourage a second GAN-based pre-
dictor to learn a broader distribution of behaviors from the input data. We
penalize the generator’s loss function of a GAN-based predictor and sample
more challenging samples to force the predictor to cover the most challeng-
ing modes (the ones related to the highest prediction errors). By doing so,
we show that we are able to cover more modes from the input data distribu-
tion, reducing the mode collapse effect on a GAN-based forecaster. Second, we
propose a multi-stage probabilistic approach for trajectory prediction, which
involves clustering entire trajectory states, training cluster class-conditioned
deep generative models for trajectory prediction, and ranking the correspond-
ing predictions. To cluster entire trajectory states, we extend SC GAN to
generate full trajectories, ensuring that the resulting clusters are formed based
on complete trajectory information. The prediction framework is structured
into three main stages:

1. Trajectory states clustering: We cluster the entire trajectory’s input
states, comparing traditional clustering methods such as K-means [66]
and its time-series extension, TS K-means [91], with our Self-Conditioned
GAN, which clusters a deep feature space derived from entire trajectory
states.

2. Conditional deep generative modeling: We train a conditional deep
generative model, such as a conditional VAE (cVAE) or a conditional
GAN (cGAN), conditioned on the clusters obtained from the first stage.
Analogous to the fourth contribution, these clusters depend on future
trajectory data, which is not available during inference.
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3. Predictions ranking: To address the unavailability of future trajectory
data during inference, we propose ranking mechanisms for the proposed
future trajectories. These mechanisms assign probabilities to each pre-
diction based on distance metrics, providing a more efficient and accurate
approach than using an auxiliary neural network to map predictions to
clusters, as proposed in previous works [90, 21, 45].

Our experiments show that the Self-Conditioned GAN handles distribu-
tion shifts more effectively than traditional clustering methods. Moreover, the
overall system outperforms class-agnostic deep generative models and effec-
tively captures static behaviors within the clustering space, which are often
neglected by state-of-the-art trajectory prediction methods.

In conclusion, this thesis shows that classes in trajectory data, whether
observable or data-driven, serve as contextual signals that, when coherent and
unambiguous, offer privileged insights into the structure and semantics of hu-
man trajectory patterns. A task that can benefit from these insights is trajec-
tory prediction, which is the main focus of this thesis. Trajectory prediction
is inherently challenging due to many factors influencing the agent’s behavior.
However, by embracing heterogeneity rather than abstracting it away, we can
develop models that are more accurate, adaptive, and context-aware. Observ-
able classes provide interpretable cues, while data-driven classes encompass
underlying motion structures beyond what is perceptible. To leverage them
fully, we need rich datasets, appropriate models, and a deep understanding of
trajectory patterns. This thesis contributes to all three as seen in Fig. 1.7.

1.4 Publications

The work described in this thesis has been published in peer-reviewed inter-
national conferences and journals.

e Tiago Rodrigues de Almeida, Eduardo Gutierrez Maestro and Oscar
Martinez Mozos. Context-free Self-Conditioned GAN for Trajectory Fore-
casting. In IEEFE International Conference on Machine Learning and
Applications (ICMLA ), pages 1218-1223, 2022

I am the main author contributing to idea development, method design,
software implementation, validation, results analysis, and manuscript
writing. The remaining authors contributed to the manuscript prepara-
tion. This paper constitutes the main contribution described in Chapter
6 and the first part of Chapter 7.

e Tiago Rodrigues de Almeida and Oscar Martinez Mozos. Likely, Light,
and Accurate Context-Free Clusters-based Trajectory Prediction. In IEEE
International Conference on Intelligent Transportation Systems (ITSC),
pages 1269-1276, 2023
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Figure 1.7: Summary of the contributions of this thesis. Top: THOR-MAGNI
dataset collection. Right: Observable classes used to condition trajectory pre-
diction methods. Left: Data-driven classes extracted directly from trajectory
data conditions the predictor during training and are inferred during inference.
Middle: Class-conditioned trajectory prediction methods using an encoder-
decoder architecture.
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I am the main author contributing to idea development, method design,
software implementation, validation, results analysis, and manuscript
writing. This paper constitutes the second part of Chapter 7.

Tiago Rodrigues de Almeida, Andrey Rudenko, Tim Schreiter, Yufei
Zhu, Eduardo Gutierrez Maestro, Lucas Morillo-Mendez, Tomasz P. Kuc-
ner, Oscar Martinez Mozos, Martin Magnusson, Luigi Palmieri, Kai O.
Arras, Achim J. Lilienthal. THOR-MAGNI: Comparative Analysis of
Deep Learning Models for Role-Conditioned Human Motion Prediction.
In IEEE/CVF International Conference on Computer Vision (ICCV)
Workshops, pages 2200-2209, 2023.

I am the main author contributing to idea development, method design,
software implementation, validation, results analysis, and manuscript
writing. Tim Schreiter and Eduardo Gutierrez Maestro helped with la-
beling the dataset and manuscript preparation. The remaining authors
contributed to the manuscript preparation. This paper is part of Chapter
4.

Tiago Rodrigues de Almeida*, Yufei Zhu*, Andrey Rudenko, Tomasz
P. Kucner, Johannes A. Stork, Martin Magnusson, Achim J. Lilienthal.
Trajectory Prediction for Heterogeneous Agents: A Performance Analysis
on Small and Imbalanced Datasets. In IEEFE Robotics and Automation
Letters, 9(7), pages 6576-6583, 2024.

I am one of the main authors contributing to idea development, the
design and implementation of deep learning methods, validation, results
analysis, and manuscript writing. Yufei, the other main co-author, devel-
oped the method based on Maps of Dynamics and assisted with setting
up the evaluation framework and co-authoring the manuscript. The re-
maining authors contributed to the manuscript preparation. This paper
is the main part of Chapter 4.

Tim Schreiter®, Tiago Rodrigues de Almeida*, Yufei Zhu, Eduardo Gutier-
rez Maestro, Lucas Morillo-Mendez, Andrey Rudenko, Luigi Palmieri,
Tomasz P Kucner, Martin Magnusson, Achim J Lilienthal, THOR-MAGNI:
A Large-scale Indoor Motion Capture Recording of Human Movement

and Robot Interaction. In The International Journal of Robotics Re-
search, 44(4):568-591;2024.

I am one of the main authors contributing to idea development, the de-
sign and execution of data collection (focusing on Scenarios 1-3), val-
idation, results analysis, and manuscript writing. Tim Schreiter, the
other main co-author, made equal contributions focusing on Scenarios
4-5. Yufei Zhu, Eduardo Gutierrez Maestro, and Lucas Morillo-Mendez
contributed to idea development, the design and execution of data col-
lection, and manuscript writing. The other authors contributed to the
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idea development, the design of data collection, and manuscript writing.
This paper constitutes the main part of Chapter 3.

e Tiago Rodrigues de Almeida, Tim Schreiter, Andrey Rudenko, Luigi
Palmieiri, Johannes A Stork, Achim J Lilienthal. THOR-MAGNI Act:
Actions for Human Motion Modeling in Robot-Shared Industrial Spaces.
In IEEE/ACM International Conference on Human-Robot Interaction
(HRI), Short Contribution, 2025.

I am the main author contributing to idea development, method design,
software implementation, validation, results analysis, and manuscript
writing. Tim Schreiter contributed by labeling the dataset and manuscript
preparation, while the remaining authors supported the manuscript prepa-
ration. This paper constitutes the main part of Chapter 5.

This thesis does not report on the following publications, which are outside
of its scope:

e Tiago Rodrigues de Almeida, Vitor Santos, Oscar Martinez Mozos, Bernardo
Lourengo. Comparative Analysis of Deep Neural Networks for the De-
tection and Decoding of Data Matrix Landmarks in Cluttered Indoor
Environments. In Journal of Intelligent & Robotic Systems 103, 13, 2021.

e Eduardo Gutierrez Maestro, Tiago Rodrigues de Almeida, Erik Schaffer-
nicht, Oscar Martinez Mozos. Wearable-Based Intelligent Emotion Mon-
itoring in Older Adults during Daily Life Activities. In Applied Sciences,
13(9), 5637, 2023.

1.5 Ethical Considerations

Research on trajectory prediction and modeling, particularly in dynamic and
human-centered environments, entails important ethical considerations. The
potential applications of this work, ranging from robotics and autonomous
systems to surveillance and human behavior analysis, require a thoughtful
evaluation of ethical principles to ensure responsible development and deploy-
ment.

The dataset collected during this research, THOR-MAGNI, involves hu-
man participants whose trajectories and visual appearances are recorded and
analyzed. All personally identifiable information has been excluded from the
dataset used for model training to address privacy concerns. Moreover, in-
formed consent was obtained from all participants for both data collection and
its subsequent use in research, ensuring compliance with ethical standards.

Trajectory prediction systems must perform equitably across diverse de-
mographic and environmental contexts to avoid unintended biases. Potential
biases in datasets or models could disproportionately affect certain groups,
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leading to concerns about fairness. During THOR-MAGNI data collection,
deliberate efforts were made to include participants of diverse genders, nation-
alities, and ethnicities, reducing the risk of overfitting to specific demographics
or conditions (see Sec. 3.2.3).

Safety and reliability are also critical concerns, particularly in real-world
applications of trajectory prediction, such as human-robot interaction. Ad-
dressing these concerns involves two key measures: (1) ensuring the inter-
pretability of trajectory predictors to allow accountability in case of failures,
and (2) integrating mechanisms to detect and manage anomalous predictions,
particularly in dynamic and safety-critical environments. In line with these
goals, we have developed a trajectory prediction system that assigns probabil-
ities to predicted trajectories, enabling robots to make more informed decisions
based on the likelihood of potential future states (see Sec. 6.4.3).

Finally, this thesis is grounded in the collaborative ethos of the scientific
community, leveraging shared datasets, tools, and methods. To uphold the
principles of open science, we have made our models, code, and results publicly
accessible, promoting transparency, reproducibility, and further advancement
in the field. This research seeks to contribute positively to the broader com-
munity by adhering to these ethical and scientific practices while ensuring its
methods and outcomes align with societal values.

1.6 Thesis Outline

The rest of this thesis is structured as follows:

Chapter 2 reviews existing datasets capturing heterogeneous human motion,
focusing on collections that span diverse agent types and behavioral vari-
ability. It also surveys methods for learning trajectory classes, including
unsupervised and self-supervised approaches, and summarizes state-of-
the-art trajectory prediction techniques for heterogeneous environments,
discussing their strengths and limitations.

Chapter 3 introduces the THOR-MAGNTI dataset, a novel large-scale human
trajectory dataset designed for mobile robot environments. It comprises
3.5 hours of data from 40 participants across five scenarios involving di-
verse spatial layouts, agent roles, and interaction patterns. Of particular
interest is the annotation of human roles, which reflect activity-driven
trajectory variations in industrial settings.

Chapter 4 proposes class-conditioned deep learning models for trajectory
prediction and evaluates them alongside pattern-based alternatives such
as Maps of Dynamics. The chapter investigates predictive performance
under low-data and class-imbalanced regimes across both indoor (THOR-
MAGNI) and outdoor (SDD) settings, offering practical guidance for
model selection based on deployment constraints.
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Chapter 5 extends the THOR-MAGNI dataset with frame-level action an-
notations derived from egocentric eye-tracking recordings, resulting in
the THOR-MAGNTI Act dataset. These fine-grained labels capture intra-
agent behavior variability at each time step and are used to enrich state
representations for both action-conditioned and joint trajectory-action
prediction models.

Chapter 6 investigates unsupervised data-driven trajectory classes. It first
studies traditional clustering methods (e.g., K-means) under various fea-
ture representations. It then introduces the Self-Conditioned GAN, a
deep learning framework that learns meaningful trajectory clusters by
optimizing a clustering objective over a learned feature space. The chap-
ter also explores predictors conditioned on future-driven clusters and
evaluates their theoretical advantages.

Chapter 7 applies data-driven classes to two prediction frameworks. First,
it uses trajectory clusters to enhance GAN-based predictors by encour-
aging coverage of rare future patterns. Second, it proposes a multi-stage
probabilistic prediction system that integrates trajectory classes as con-
ditioning inputs and uses cluster-based sampling and ranking to generate
diverse and more accurate predictions.

Chapter 8 concludes the thesis by summarizing its main contributions and
proposing directions for future work. These include: (1) hybrid class-
conditioning strategies that combine observable and data-driven labels,
(2) robustness analysis of prediction performance under class noise and
sensor errors, and (3) fine-grained decomposition of data-driven classes
to capture temporal dynamics of motion behavior.






Chapter 2

Literature Review

The beginning of knowledge is the discovery of something we do not understand.
— Frank Herbert, Dune

Trajectory prediction using deep learning methods involves a two-stage
pipeline: (1) an offline training phase, where the model learns to align its pre-
dictions with ground truth by minimizing a defined objective function over a
training dataset, and (2) an inference phase, where the trained model is de-
ployed on unseen data to generate trajectory predictions based on the learned
parameters. This thesis proposes using contextual observable and data-driven
cues, specifically trajectory classes, to enhance the accuracy of trajectory pre-
diction. Trajectory classes offer descriptive insights into the agent’s movement
patterns, providing additional context to improve predictive accuracy.

Fig. 2.1 illustrates the trajectory prediction pipeline. During the training
phase (top), including observable classes typically requires manual labeling
of the trajectory dataset by a human annotator. Alternatively, data-driven
classes can be identified through an automated learning process, which parti-
tions the dataset based on inherent structures discovered within the trajectory
data. Once the dataset is augmented with trajectory classes, the predictor’s
weights are optimized using this enriched information. During the inference
phase (bottom), the trained predictor uses the trajectory classes to produce
more accurate predictions of future trajectories.

This chapter covers the existing work in every aspect of the described
prediction pipeline. Sec. 2.1 begins with a comprehensive review of existing
human trajectory data collections, highlighting key datasets and their respec-
tive contexts. In the same section, we discuss various clustering techniques
for learning data-driven trajectory classes, which enable the augmentation of
trajectory datasets with data-driven classes. Subsequently, Sec. 2.2 explores
trajectory prediction approaches that explicitly or implicitly consider trajec-
tory classes, emphasizing methods incorporating observable- and data-driven
contextual information.

27
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Figure 2.1: The trajectory prediction pipeline consists of two stages: offline
training (top) and inference (bottom). Dotted arrows and red boxes high-
light the steps for incorporating data heterogeneity. During training, either
learned or predefined trajectory classes augment the original dataset and in-
tegrate the training phase of the prediction model. The model learns to map
observed trajectory states and classes to future trajectory states. During infer-
ence, trajectory classes can be dynamically detected or assumed based on prior
knowledge, guiding the trained model to generate accurate future trajectory
predictions from the input trajectory states.

2.1 Heterogeneous Motion Trajectory Datasets

We consider a motion trajectory dataset heterogeneous when it captures dis-
tinct trajectory patterns produced by dynamic agents. In many existing datasets,
particularly those designed for autonomous driving, observable classes — pre-
defined categories such as vehicles, pedestrians, or cyclists — represent distinct
trajectory patterns. Beyond these predefined classes, data-driven methods au-
tomatically identify trajectory classes, facilitating the extraction of meaning-
ful entities from any heterogeneous dataset. This section reviews trajectory
datasets that encompass heterogeneous trajectory data, with a focus on out-
door scenarios, which are widely studied, and indoor environments, where mo-
tion trajectory data collection remains comparatively underexplored.
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2.1.1 Outdoor Trajectory Datasets

Outdoor datasets are primarily driven by the autonomous driving community,
where trajectory prediction is a critical task [63]. The highD dataset, recorded
using camera-equipped drones, captures trajectories of cars and trucks on Ger-
man highways, providing a dataset of over 110,000 vehicles [53]. It lacks the
diversity of other road agents, excluding, for instance, pedestrians and cy-
clists. Conversely, the PIE dataset focuses exclusively on pedestrian action
estimation and trajectory prediction [78]. The inD dataset builds upon highD,
shifting the focus from highways to intersection zones and incorporating five
categories of road agents: pedestrians, bicycles, cars, trucks, and buses. The
Argoverse datasets are designed for various autonomous driving tasks. The
first version, Argoverse 1, features trajectories of autonomous vehicles, regular
vehicles, and other road agents [17]. Argoverse 2 expands upon this, support-
ing a more diverse set of perception tasks, including semantic segmentation
and 3D object detection [97].

In other contexts, such as university campuses and surveilled areas, hu-
man motion trajectory datasets have advanced our understanding of human
movement in outdoor environments. The UCY dataset [60] consists of pedes-
trian trajectories in three public spaces from top-view acquisitions. Pelle-
grini, S. et al. extend this work by adding two additional outdoor scenes [76],
forming the well-established ETH/UCY trajectory prediction benchmark. The
Stanford Drone Dataset (SDD), recorded using a drone, provides trajectory
data from eight unique scenes at the Stanford University campus [79]. It in-
cludes six observable classes: Bicyclist, Pedestrian, Skateboarder, Cart, Car,
and Bus. However, the dataset’s utility is limited due to data inaccuracies and
post-processing errors [2]. For instance, the observable classes Bicyclist and
Pedestrian dominate the class representation in most scenes. In the remaining
scenes, Pedestrian and Car are the most prevalent classes, though most cars
are parked, contributing static rather than dynamic trajectories. The ViRAT
dataset [74] is a comprehensive resource for event recognition in surveillance
videos recorded by static cameras. It features 11 scenes with 23 event cat-
egories, grouped into three main types: single-person events (e.g., walking,
running, standing), person-object interactions (e.g., entering/exiting vehicles,
loading /unloading goods), and person-facility interactions (e.g., entering/ex-
iting buildings). The UCLA dataset [89] captures aerial videos of picnic areas
using drones. It offers diverse annotations, including semantic segmentation of
scene layouts, human and object detection and tracking, group identification,
role assignments, and event recognition. The JRDB dataset provides an ex-
tensive hybrid collection of indoor and outdoor trajectory data captured by
sensors onboard a mobile robot [70]. Successive iterations of this dataset intro-
duce additional features for understanding human movement in contextualized
and social environments: JRDB-Act focuses on micro-actions and social group
dynamics [30]; JRDB-Pose provides human pose estimation and tracking [94];
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JRDB-Social includes text annotations describing human social interactions,
capturing relationships between group body positions, salient scene contexts,
venue locations, and group intentions or purposes [44].

In this thesis, we use the ETH/UCY dataset [60, 76], the SDD [79], and
the Argoverse [17] to evaluate trajectory prediction methods in outdoor envi-
ronments.

2.1.2 Indoor Human Trajectory Datasets

Indoor human trajectory datasets are characterized by constrained movement
spaces, often influenced by static obstacles shaping how people navigate the
environment. The Edinburgh dataset captures people walking through the In-
formatics Forum, the main building of the School of Informatics at the Uni-
versity of Edinburgh [68]. This dataset records pedestrian trajectories in social
contexts near entrances and exit locations. The ATC dataset provides human
motion trajectories in a shopping mall, collected over an extensive period of
41 days using multiple 3D range sensors [11]. The Kinetic Tracking Preci-
sion (KTP) dataset tracks individuals in an empty room using RGB-D sen-
sors mounted on a mobile robot [73]. It includes four videos, each featuring
distinct robot behaviors: static, unidirectional movement, rotation, and bidi-
rectional movement, with interactions involving five individuals. The L-CAS
dataset, recorded in the main building of the University of Lincoln, includes 3D
scan frames acquired by a mobile robot platform [101]. It categorizes agents
into two observable classes: Pedestrian and Group. The MoGaze dataset is
the first to integrate full-body motion and gaze data, capturing a single in-
dividual performing various cleaning tasks at a table using a motion capture
(mocap) system [54]. The Flobot dataset features data from an advanced au-
tonomous floor-scrubbing robot equipped with a stereo camera, two RGB-D
cameras, and a 3D lidar. This dataset spans four public locations: an airport,
a warehouse, a supermarket, and a hospital, offering diverse scene perceptions.
The THOR dataset records accurate human motion trajectories in a mock in-
dustrial environment with a mocap system [83]. It includes nine participants
interacting in three loosely scripted scenarios: a static mobile robot, a mov-
ing mobile robot, and the presence of obstacles. Finally, the Oxford Indoor
Human Motion Dataset (Oxford-THMM) also uses a mocap system to capture
goal-oriented human trajectories in an indoor setting with one participant.
As detailed in Chapter 3, we extend the THOR family of datasets with the
introduction of THOR-MAGNTI [86]. The THOR-MAGNI dataset offers exten-
sive indoor human-robot interaction data using MoCap, 3D lidar, and RGB-D
cameras to record motion and social interactions in various contexts. It enriches
the field by including scenario-based interactions, making it ideal for analyzing
human social navigation and collaboration. Our dataset explores human-robot
co-navigation and robotic assistance in industrial settings, focusing on task effi-
ciency and user experience in collaborative workflows, making THOR-MAGNI
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uniquely valuable for advancing our understanding of human-robot interaction.
In comparison to the predecessor THOR dataset, THOR-MAGNTI represents a
substantial improvement, incorporating more extended data, exogenous factors
such as lane markings, one-way passages, and human activities, and introduc-
ing specific HRI scenarios. In summary, the THOR-MAGNI dataset contains
3.5 times more trajectory data than THOR, therefore providing a broader
range of situations for the analysis of human motion trajectories. In addition,
THOR-MAGNI includes sensor data recorded by a mobile robot and gaze vec-
tors aligned with the corresponding trajectories, allowing simultaneous analysis
of both modalities. Also, a key feature of THOR-MAGNI is the inclusion of
human roles, represented as observable classes, tailored to tasks and activities
relevant to industrial settings (e.g., transporting objects). However, the activ-
ity labels in THOR-MAGNTI are limited to the static roles assigned to each
participant, reflecting a single complex activity for the duration of the experi-
ment. To address this limitation, we introduce THOR-MAGNI Act, extending
the original dataset by introducing fine-grained action labels (one action per
time step), enabling a more detailed representation of sub-tasks within each
activity [81].
Tab. 2.1 compares well-established and recent datasets thoroughly.
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2.1.3 Learning Trajectory Data Classes

Most processes to automatically find classes in trajectory datasets rely on
traditional clustering methods such as K-means [66] and Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) [31, 12]. Among these,
K-means is the most widely used clustering method for trajectory prediction
due to its simplicity, scalability, and computational efficiency [13, 65, 90, 100,
98, 99, 4, 96, 5|. In trajectory prediction tasks, K-means is often employed
to cluster future trajectory modalities, providing a means for trajectory de-
coders to produce diverse and multimodal predictions. DBSCAN, on the other
hand, offers a density-based clustering approach that can automatically de-
tect noise or outliers in the data. Unlike K-means, which assumes spherical
cluster shapes, DBSCAN can capture clusters of arbitrary shapes, making it
particularly suitable for more complex and irregular trajectory patterns. For
instance, CoMoGCN leverages DBSCAN to detect groups of people in a scene,
enhancing trajectory representations for more coherent predictions [22]. In an-
other application, [58] employs DBSCAN for anomaly detection in indoor hu-
man trajectory data, where noise points correspond to irregular or anomalous
movement patterns.

In addition to K-means and DBSCAN, more advanced clustering tech-
niques have also been applied in trajectory prediction tasks. For instance,
Spectral Clustering has been used to regularize the loss function while train-
ing graph-based trajectory prediction models [15]. This approach reduces the
error margin in long-term prediction by transforming trajectory data into a
graph representation and applying spectral methods. Furthermore, Learning
Vector Quantization (LVQ) [49] has been explored to analyze the complex-
ity of standard human trajectory datasets [42]. Unlike traditional clustering
methods, LVQ adopts a prototype-based approach, mapping trajectories to
representative codebook vectors. This method provides an interpretable and
fine-grained analysis of the trajectory data structure while highlighting the
diversity and complexity of human motion patterns. In [80], we propose a Self-
Conditioned GAN framework to discover data-driven trajectory classes and
extend this approach in [25]. This framework clusters the discriminator’s fea-
ture space during training, and the resulting cluster indices directly condition
the generator. This process ensures that the quality of the learned clusters
directly influences the prediction performance, leading to clusters that are in-
formative to the trajectory prediction task.

2.2 Predicting Heterogeneous Trajectory Data

The prediction of heterogeneous trajectory data poses challenges due to the
diversity and variability of trajectory patterns, requiring highly flexible and
context-aware models. Informed prediction methods address this complexity
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by incorporating additional contextual information derived from two sources:
(1) the external perception and (2) the trajectory data.

External perception context pertains to observable characteristics of the
agents, such as their classes (e.g., Pedestrian or Car) or characteristics (e.g.,
shape) and actions (e.g., picking up an object or walking), which provide prior
perception-driven knowledge to guide trajectory predictions. In Sec. 2.2.1, we
discuss methods that leverage the external context that is either predefined or
detected dynamically.

Conversely, analyzing agents’ trajectories solely depends on the trajectory
data. These approaches often involve a preliminary step for detecting trajec-
tory classes (see Fig. 2.1) or use the predictor’s feature space to automatically
learn meaningful data partitions. By eliminating the dependence on observable
class labels, these methods enable the learning of class-like structures through
unsupervised or self-supervised learning techniques. These trajectory-based
methods are covered in detail in Sec. 2.2.2.

2.2.1 Observable Context for Trajectory Prediction

Observable contextual information is essential for addressing the challenges of
trajectory prediction, as it allows models to be explicitly conditioned on con-
textual cues. In autonomous driving settings, methods like Traphic [14] lever-
age the shape of the agent obtained from perception modules, to differentiate
between agents. This contextual information is subsequently used to condition
and enhance trajectory predictions. However, this approach does not transfer
well to human-centered scenarios where agents share similar physical appear-
ances, rendering shape-based differentiation unreliable. HAICU [43] relies on
class conditioning, where road agent classes are first detected, and the outputs
of these detectors are used as representations for class labels. Although effective
in structured environments, this approach is less suitable for human-centered
settings, where trajectory cues rather than agent characteristics are the domi-
nant source of heterogeneity [80]. Asghar et al. [3] explores dynamic Occupancy
Grid Maps (OGMs) combined with agent classes to predict solely vehicle tra-
jectories, assuming that class information is available. However, this method
does not account for heterogeneous entities such as pedestrians and cyclists.
Additionally, the resolution of OGMs presents limitations, as smaller entities
like pedestrians and cyclists require finer representations, which increase com-
putational complexity and restrict scalability. These limitations highlight the
need for more versatile and scalable models applicable to diverse road users.
Alternative methods address heterogeneity by employing dedicated deep
learning modules for each agent class [67, 72, 33]. TafficPredict [67] assumes
that class information is available and that agents of the same class share
similar dynamic properties, such as speed, acceleration, and reaction to other
agents. A graph-based network is then used, where each class is modeled as
a super node connected to its respective instances. HEAT is also a graph-
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based deep learning framework that leverages ground truth class information
in node representation for interaction and historical agent-state representa-
tion [72]. Maosi at al. propose a 3-channel hierarchical Transformer network,
where each channel extracts trajectory features for one of three agent classes:
vehicles, bicycles, and pedestrians [33]. While effective, these methods depend
on class-specific nodes, encoders, or channels, which limits their scalability
as the number of agent classes grows. Furthermore, such methods require an
external mechanism to infer this contextual information during inference, for
instance, an object detector [95]. To address these limitations, ABC+ [38] em-
ploys supervised contrastive learning to group trajectory representations of
samples belonging to the same action while pushing apart representations of
different classes. This approach reduces dependency on external detectors dur-
ing inference by learning observable contextual information solely during the
offline training stage.

In human-centered environments, class-conditioned trajectory prediction
remains underexplored. Unlike road agents, where distinct motion patterns
(e.g., faster-moving vehicles versus slower-moving pedestrians) facilitate class-
based differentiation, human trajectories often present subtle differences, mak-
ing class-conditioned prediction more challenging. To address this gap, THOR-
MAGNTI [86] provides a comprehensive dataset of motion trajectories in an
industrial-like environment, as described in Chapter 3. The dataset introduces
agent classes tailored for industrial tasks that encapsulate groups of trajecto-
ries with distinct velocity profiles [26]. Building on this, Chapter 4 analyzes
various trajectory prediction methods, including deep learning frameworks
and a class-aware Maps of Dynamics method, in robotics and outdoor en-
vironments [27]. These initial efforts establish a foundation for understanding
the impact of agent classes in trajectory prediction tasks within robotics and
human-centered settings. In particular, we address challenges posed by class
imbalance and limited training data, both critical barriers to effectively train-
ing deep learning models. Tab. 2.2 top overviews existing trajectory prediction
methods where the observable contextual information guides forecasts.

2.2.2 Data-driven Context for Trajectory Prediction

As defined in Chapter 1, trajectory classes group similar trajectory samples
based on shared characteristics. These groups can be identified either prior to
training the predictor via clustering techniques (see Fig. 2.1) or during the
training process itself. For instance, in generative models such as Variational
Autoencoders (VAEs) [59], Generative Adversarial Networks (GANs) [37], or
Flow-based models [20], the latent space is utilized to uncover trajectory groups
by capturing the underlying distribution of the input data. Alternatively, con-
trastive learning techniques offer a self-supervised approach to discovering
class-like representations, effectively grouping trajectories without requiring
explicit labels [19]. Miao et al. propose a pre-processing step where the Eu-
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clidean distance is used to identify the most similar observed trajectories, form-
ing a candidate set assuming their corresponding futures are plausible [45]. A
regression network then refines these candidates, while a scoring network eval-
uates and classifies their plausibility. This approach effectively represents the
refined candidate set as a group of trajectories sharing similar future motion
patterns akin to trajectory classes. PCCSNet identifies trajectory classes by
clustering deep trajectory embeddings during the optimization process, en-
suring diversity among predicted trajectories and assigning probabilities to
multiple plausible futures [90]. Similarly, Chen et al. cluster future trajectory
embeddings to learn trajectory classes [21]. A classifier then establishes a map-
ping between observed trajectories and the corresponding clusters of future tra-
jectories in the latent space. Alternatively, we introduce a multi-stage predic-
tion framework that explicitly conditions the predictor on data-driven future
trajectory classes [25]. A distance-based mechanism assigns probabilities to
predictions during inference, providing a more informed probabilistic output.
The Mized Gaussian Flow (MGF) model extends this concept by employing
a Normalizing Flow framework to model probabilities over a set of plausible
future trajectories [20]. This approach constrains the negative log-likelihood
(NLL) to a sub-Gaussian distribution derived from clustered representations
of future trajectories, improving prediction diversity and accuracy.

Contrastive learning has also been employed to force models to learn di-
verse motion behaviors in the embedding space [19, 96]. The DisDis method
incorporates contrastive learning within a ¢VAE trajectory predictor, where
the contrastive objective implicitly discriminates between similar and dissim-
ilar motion patterns in the latent space [19]. Finally, FEND employs Proto-
typical Contrastive Learning (PCL) to construct a semantically hierarchical
clustered feature space, effectively mitigating long-tailed errors and improving
the representation of rare trajectory patterns [96]. Tab. 2.2 bottom overviews
existing trajectory prediction methods, where the class-like representations
emerge through learning without direct conditioning.
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Table 2.2: Comparison of trajectory prediction methods considering
observable- and data-driven contextual information. Top: Methods condi-
tioned on observable characteristics, such as agent shape or type. Bottom:
Methods leveraging data-driven contextual features, including trajectory clus-
ters and learned trajectory embeddings.

Method | Trajectory Class | Training | Inference
Traphic [67] ‘ agent shape | detected | detected
HAICU [43] ‘ agent type ‘ detected ‘ detected

OGMs [3] ‘ agent type | available | available

TrafficPredict [67] | agent type | available | available
HEAT [72] ‘ agent type | available | available
3-channel [33] ‘ agent type ‘ available ‘ available
ABC+ [38] ‘ agent type ‘ available ‘
Ours [27] ‘ agent type | available | available
PCCSNet [90] | trajectory cluster | available | detected
DisDis [19] | embeddings similarity | learned |
[45] | trajectory similarity | detected | detected
[21] | trajectory cluster | available | detected

Ours [25] | trajectory cluster | available | detected
FEND [96] | trajectory cluster | detected |

MGF [20] | trajectory cluster | available | detected







Chapter 3

Data Collection of
Heterogeneous Moving
Agents

To deny our own impulses is to deny the very thing that makes us human.
— Mouse, The Matrix

In this chapter, we introduce THOR-MAGNI, a large-scale indoor human
and robot navigation and interaction dataset. Our dataset supports the under-
standing, modeling, and prediction of human motion, analyzing goal-oriented
human-robot interactions, and investigating visual attention in social inter-
action contexts. THOR-MAGNI addresses a critical gap in existing datasets
for human motion analysis and human-robot interaction. This gap stems from
the limited representation of the scene and target agent cues, which are es-
sential for developing robust models that can accurately capture the interplay
between contextual cues and human behavior across diverse scenarios. Unlike
existing datasets, THOR-MAGNT incorporates a broader range of contextual
features and scenario variations, enabling controlled isolation of specific fac-
tors for analysis. The dataset includes many social human-human and HRI
scenarios, rich context annotations, and multi-modal data, such as walking
trajectories, gaze tracking data, and lidar and camera streams recorded from
a mobile robot. We also provide tools for visualization and processing of the
recorded data. THOR-MAGNI is unique in the amount and diversity of sensor
data collected in a contextualized and socially dynamic indoor environment,
capturing natural human-robot interactions. For this thesis, THOR-MAGNI
introduces meaningful observable classes for dynamic agents tailored for in-
dustrial settings, enabling the study of human activities and motion patterns
in complex, real-world scenarios.

39



40 CHAPTER 3. THOR-MAGNI DATA COLLECTION

3.1 Introduction

3.1.1 Motivation and Contributions

Modern approaches for modeling human motion require plentiful data recorded
in diverse environments and settings to train on and for the evaluation [84].
Among the growing numbers of human trajectory datasets, most focus on
capturing interactions between the moving agents in indoor [11], outdoor [79],
and automated driving [10, 69, 97] settings. These datasets are designed to
study how people interact and avoid collisions in social settings by describing
their motion trajectories through position and velocity information. Further
datasets attempt to capture full-body motion in various activities and human-
object interactions in household settings [62, 54, 30].

As described in Chapter 1, human motion is influenced by many exogenous
factors, which cumulatively amount to the context in which people move and
interact. Among those are numerous external or environmental factors: mo-
tion and activities of other people and robots, locations of obstacles, semantic
layout attributes such as points of common interest, direction signs, and spe-
cial zones. Motion trajectory datasets should not only capture these factors
to enable computational analysis of how people navigate but also vary them
systematically to support factor isolation in various conditions. Datasets with
rich context can better explain, model, and predict human motion.

Furthermore, beyond the spatial context, there are various aspects of the
specific agent — internal factors — which are helpful in better understanding
their intention, ongoing activity, attention, distraction, preferences, and abili-
ties. These cues include head orientations, full body positions, gaze directions,
social grouping, and past activity patterns. Multi-modal approaches for hu-
man motion modeling and prediction can provide more accurate results by
combining these cues [27], and their development is subject to the availability
of high-quality multi-modal data.

Existing datasets in human motion analysis often lack the comprehensive
inclusion of the exogenous factors and the target agent cues necessary for
holistic studies of human motion dynamics. This research gap hinders the de-
velopment of robust models that capture the relationship between contextual
cues and human behavior in different scenarios. To address this gap, we present
a novel dataset incorporating a broader set of contextual features and multiple
variations to support factor isolation. By integrating diverse modalities such
as walking trajectories, eye-tracking data, and environmental sensory inputs
captured by a mobile robot (see Fig. 3.1), our dataset fosters the exploration
and analysis of human motion in various scenarios with increased fidelity and
granularity. A key contribution of this dataset, particularly relevant to this the-
sis, is the inclusion of human roles. These roles, described by physical tasks in
industrial scenarios, influence how individuals navigate the environment, pro-
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(3) Eye tracking (2D, 3D) + gaze-overlay (4) Onboard cameras (fish-eye, RGB-D)

Figure 3.1: THOR-MAGNI data modalities. (1) walking trajectories of partic-
ipants in a workplace setting shared with other humans and robots; (2) lidar
sweep recorded with a mobile robot; (3) snapshot from an eye tracker’s gaze
overlay video; (4) fish-eye camera image from the mobile robot, showing object
stashes and two goal points from our scenarios.

viding meaningful insights into the relationship between activities and motion
patterns.

We propose a novel dataset, THOR-MAGNTI, of accurate human and robot
navigation and interaction in diverse indoor contexts, building on the previous
THOR dataset [83]. The THOR dataset established a foundation for collecting
open-source data on human social navigation toward randomized targets in a
controlled setting using motion capture technology with minimal scripting.
The THOR-MAGNI dataset represents an important advancement, enhancing
data quality and features to provide rich insights into human motion and
interactions within a larger room.

The THOR-MAGNI data collection is designed around a systematic vari-
ation of exogenous factors to allow building cue-conditioned models of human
motion and verifying hypotheses on factor impact. To that end, we propose
five scenarios in which the participants, in addition to navigation, need to
move objects, interact with each other and the robot, and respond to remote
instructions. The dataset includes differential and omnidirectional robot nav-
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igation, semantic zones, direction signs in the environment, and many other
aspects. We provide position and head orientation for each moving agent, as
well as robot sensor data and gaze tracking. Finally, we provide tools to visu-
alize the dataset’s multiple modalities and preprocess the trajectory data. In
total, THOR-MAGNTI captures 3.5 hours of motion of 40 participants over five
days of recording, which is available for download!. Furthermore, we note the
continuity between the THOR and THOR-MAGNI recordings due to their
shared environment (in diverse configurations), motion capture system, and
complementary scenario composition.

3.1.2 Outline

The chapter is organized as follows: in Sec. 3.2, we provide detailed information
about the data collection process, while Sec. 3.3 describes the tools available for
visualizing and preprocessing the data. Finally, Sec. 3.4 presents a quantitative
evaluation of the collected data, and the chapter concludes in Sec. 3.5.

3.2 THOR-MAGNI Dataset

The THOR-MAGNI dataset is a large-scale indoor motion capture recording of
human movement and robot interaction. It consists of 52 four-minute record-
ings (runs) of participants performing various activities related to navigating
alone and in groups, finding and transporting small and large objects, and in-
teracting with robots. THOR-MAGNI contains over 3.5 hours of motion data
for 40 participants, including position, velocity, and head orientation across
five scenarios. A total of 9.1 hours of raw eye-tracking data and 8.3 hours of
egocentric video recordings were collected from 16 participants. In 24 runs,
THOR-MAGNI also includes the robot sensor data of 3D point clouds from
an Ouster lidar. Additionally, videos recorded by an Azure Kinect camera and
a Basler fish-eye camera onboard a mobile robot are available on request.

This thesis focuses on understanding the heterogeneity of motion trajectory
patterns, which arise from factors such as the agents’ ongoing roles, activities,
and motion patterns [27]. From the THOR-MAGNT dataset, we concentrate
on two scenarios where agent activities are the main feature of interest. This
section provides an overview of the data recording environment (Sec. 3.2.1),
summarizes the five scenarios with an emphasis on the two most relevant to this
thesis and their associated agents (Sec. 3.2.2), and describes the participants’
backgrounds and priming protocols (Sec. 3.2.3).

Thttps://doi.org/10.5281/zenodo . 10407223
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3.2.1 Environment Design and System Setup

The data acquisition was conducted in a laboratory at Orebro University, the
same as in the THOR dataset [83]. In THOR-MAGNTI, the laboratory features
two distinct configurations:

1. Semantically-rich industrial logistic setting: This configuration was
designed to emulate an industrial workspace to encourage frequent inter-
actions between humans and robotic co-workers. It includes static obsta-
cles, lane markings on the floor, and designated special zones (see Fig. 3.2,
left). This layout features variations in the placement of obstacles, such
as robotic manipulators and tables, to create diverse navigation paths
and prevent straightforward paths between goal points.

2. Human-robot interaction setting: This compact, open-space config-
uration was optimized for human-robot interaction experiments, provid-
ing an environment to test collaboration and engagement in shared tasks
(see Fig. 3.2, right).

Both configurations include seven goal positions strategically placed to en-
courage purposeful human navigation and promote frequent interactions in
the central area (see (4) Fig. 3.2, left). Additionally, two robots were in-
cluded in the environment: a static robotic arm positioned near the podium
and an omnidirectional mobile robot equipped with a robotic arm and the
NAO robot, particularly used for human-robot interactions, referred to as
“DARKO"™? (see Fig. 3.3).

We used a motion capture system from Qualisys® with ten infrared cam-
eras (Oqus 7+) positioned around the room to track moving agents. This setup
provides broad coverage of the room’s volume, capturing data at 100 Hz with a
spatial resolution of 1 mm. The system’s coordinate frame is at ground level in
the center of the room. The participants and the mobile robot are represented
as unique rigid bodies, identifiable through distinct patterns of passive reflec-
tive markers. These markers are arranged in six degrees of freedom (6DoF)
on bicycle helmets to track the participants (see (3) in Fig. 3.2, left). For the
mobile robot, the reflective markers were attached directly to its surface. This
configuration precisely captures each participant’s 6DoF head position and
orientation. We provided the participants with individualized helmets for the
recording sessions.

3.2.2 Scenarios Design

To study the context of agent movement, we propose five distinct scenarios
encompassing both human and robot dynamics. These scenarios were tailored

?https://darko-project.eu/
Shttps://www.qualisys.com
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Figure 3.2: Our dataset comprehensively explores human-robot interaction in
a shared workplace environment. Left: larger laboratory room layout high-
lighting several semantic features, such as static obstacles (e.g., tables and
robots), floor markings (1), and a narrow corridor on the right, restricted by
a no-entry sign (2). The table displays the motion-tracking helmets (3). Goal
points are located around the room (4). Right: smaller laboratory room where
participants navigate independently, collaborate in social groups, and interact
with a mobile robot. Navigation between goal points is coordinated via card
decks located at the goal points, which assign participants a new destination
upon drawing a card, as shown on the far left.

to capture various aspects of human motion and human-robot interactions.
Scenario 1 focuses on the influence of semantic environmental attributes on
human motion and establishes a baseline for goal-directed social navigation. It
includes two conditions: condition A, comprising a regular social behavior in a
static environment without additional semantic cues, and condition B, includ-
ing floor markings and a one-way passage to study their impact on navigation
dynamics. Building on the layout of Scenario 1A, Scenario 2 introduces observ-
able classes by assigning specific roles to participants. These roles represent
industrial activities, such as transporting objects, and are helpful to study how
role-specific tasks influence navigation patterns. Subsequently, Scenario 3 ex-
plores how the robot’s motion style affects the role-specific navigation patterns
established in Scenario 2.

Transitioning to a smaller room configuration, we present two scenarios to
explore human motion and intended human-robot interactions: Scenarios 4-5.
In Scenario 4, participants engage in intermittent interaction with DARKO.
We equip DARKO with the NAO robot (see Fig. 3.3), which communicates
with participants using two distinct interaction styles: verbal (condition A)
and multi-modal (condition B). These interactions are mediated to guide joint
navigation toward goal points, emphasizing collaborative navigation behaviors.
Scenario 5 introduces active collaboration between the robots and a human
co-worker to transport small storage bins, simulating task-oriented human-
robot teamwork. In summary, DARKO remains stationary in Scenarios 1-2
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Figure 3.3: The robot used in our data collection (the “DARKO” robot) with
an omnidirectional mobile base (RB-Kairos) of the dimensions 760 x 665 X
690 mm (5), equipped with two sensor towers, one hosting two Azure Kinect
RGB-D cameras (2), and the other hosting an Ouster OS0-128 lidar and two
Basler fish-eye RGB cameras (4). Additional equipment includes two Sick Mi-
croScan 2D safety lidars (6), mecanum wheels (7), and the NAO robot (“AR-
MoD”) for interaction with participants (3). The robotic arm was not used in
our experiments (1).

as an additional static element in the environment, while it is mobile in the
remaining scenarios, promoting human-robot interaction and collaboration.

We conducted multiple runs for each condition across Scenarios 1-5 to
capture diverse interactions and behaviors. Specifically:

e For Scenarios 1 and 3, we recorded two runs per condition.
e For Scenario 2, we recorded two runs.

e For Scenario 4, we recorded four runs per condition.

e For Scenario 5, we recorded four runs.

To mitigate learning effects, such as habituation or adaptation, we random-
ized the recording order of conditions for Scenarios 3-4. This approach ensures
that participants do not become overly familiar with a particular condition,
which can unintentionally influence their behavior. By employing this system-
atic methodology, we aim to capture unbiased interactions in each scenario.
For a detailed overview of all scenarios and their respective attributes, refer to
Fig. 3.4, with the definition of roles provided in the following subsection. Of
particular relevance to this thesis are Scenarios 2-3, as they involve heteroge-
neous agents with distinct roles that naturally influence their trajectory cues,
such as velocity, acceleration, and trajectory linearity.
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Scenario 1: Scenario 2: Scenario 3: Scenario 4: Scenario 5:
Information Capturing Motion Role-Specific Motion Impact of Mobile Spatial HRI and Spatial HRI, Proactive

Dynamics in the
Environment

Patterns in Industrial
Environments

Robot Motion on
Human Behavior

Navigation in a Shared
Environment

Robotic Assistance

Visitors-Alone

Visitors-Alone
Visitors-Group 2
Visitors-Group 3

Visitors-Alone
Visitors-Group 2
Visitors-Group 3

Visitors-Alone

Visitors-Alone

Roles Visitors-Group 2 . . Visitors-Alone HRI Visitors-Group 2
Visitors-Group 3 Carrier-Box Carrier-Box Visitors-Group 2 |Carrier-Storage Bin HRI
Carrier-Bucket Carrier-Bucket
Carrier-Large Object | Carrier-Large Object
Robot- Stationary Stationary Condition based Directional Directional
Motion (Obstacle) (Obstacle) (Teleoperated) |(Semi-Autonomous)|(Semi-Autonomous)

Environment-
Layout

Condition A Condition A Condition A
Layoutmlt— Differential- Verbal-Only HRI
Conditions Condition B No conditions Condition B No conditions
with semantics Omnidirectional- Condition B
Driving Mutlimodal HRI
Duration and 64 min. on 32 min. on 64 min. on 32 min. on 16 min. on
Recording Day Day 1-4 Day 1-4 Day 1-4 Day 5 Day 5

Figure 3.4: Scenario definitions in the THOR-MAGNI dataset, including par-
ticipant roles, robot motion status (e.g., autonomous or teleoperated), envi-
ronment layout (i.e., obstacle maps), specific scenario conditions, as well as
the duration and recording days. Each recording day involved a unique set of
participants: nine on day 1 and seven on days 2-4. Three mobile eye-tracking
devices were used each day for three participants. On day 5, two devices were
used for two separate sets of participants.

Tasks, Activities and Roles Requiring Search and Navigation

We designed tasks to simulate realistic industrial workplace scenarios, focusing
on activities requiring search, navigation, and interaction with objects, other
participants, and a mobile robot. Participants perform these tasks based on
their assigned role, representing an observable class in this thesis. Our dataset
contains two types of roles: Visitors and Carriers. Visitors navigate between
designated goal points either individually ( Visitors—Alone) or in groups of two
(Visitors—Group 2) or three ( Visitors—Group 3). Visitors use a card-based sys-
tem to navigate, receiving new destinations each time they reach a designated
goal point. At each goal point, a deck of cards features instructions such as “Go
to Goal 1”. The instructions specify a new destination or contain information
on how to go to the robot. In the case of Visitors—Alone, they draw a card and
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place it at the bottom of the deck. Afterward, the participant moves to the
destination. In the case of groups, the members choose who draws the card.

Carriers are tasked with transporting objects of varying sizes and shapes,
including small objects such as plastic buckets of canned vegetables (Carrier—
Bucket); medium-sized objects like cardboard boxes filled with books, requiring
two-handed transportation (Carrier—Boz); and large objects represented by
a poster stand with four wheels, moved collaboratively by two participants
(Carrier—Large Object). We categorize the objects based on the navigation
difficulty they impose: small objects pose the least difficulty, medium-sized
objects require moderate effort, and large objects present the most substantial
challenge. The overall goal of this setup is to assess how different ongoing roles
affect participants’ motion trajectory patterns (O-TP defined in Sec. 1.2 and
solved in Chapter 4).

Scenario 2: Industrial Role-Specific Motion Patterns

Scenario 2 features the same environment layout as Scenario 1A (Fig. 3.5
right). In addition to the goal-driven navigation (“Visitors” role), this scenario
introduces people performing different tasks as “Carriers”. For each run, we
assign new roles to the participants. Depending on the total number of partic-
ipants in a run, the “Visitors” role may include Visitors-Alone, Visitors-Group
2, and Visitors-Group 3. For the “Carriers” role, one participant carries small
objects (i.e., buckets), another carries medium objects (i.e., boxes) between two
goal points, and two participants move a large object (i.e., a poster stand).
We use Discord® to instruct one member of the two-person team responsible
for moving the large object, enabling dynamic allocation of new goal points.
Fig. 3.5 left depicts examples of trajectories for each role.

In summary, Scenario 2 combines role-specific tasks with goal-driven navi-
gation, providing a versatile platform to study how different activities influence
motion profiles in a shared environment.

Scenario 3: Impact of Mobile Robot Motion on Human Behavior

Scenario 3 introduces the opportunity to study the interplay between human
activities and the motion style of the mobile robot. Unlike Scenarios 1-2, where
the DARKO robot remains stationary, it is now mobile, enabling the explo-
ration of changes in human motion patterns based on the robot’s driving style.
This scenario includes two conditions, each characterized by a distinct robot
navigation style: condition A, where the robot moves with a designated di-
rection, following directional differential-drive kinematics and Condition B
where it uses its mecanum wheels for omnidirectional movement. A human
operator controls the mobile robot remotely to ensure the safety of partici-
pants throughout the experiments. Participant roles remain the same in both

4Free and easy-to-use communication and collaboration platform https://discord.com
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—— Visitors-Group  —— Carrier-Large Object Carrier-Bucket
—— Visitors-Alone Carrier-Box

—— Visitors-Group  —— Carrier-Large Object Carrier-Bucket
—— Visitors-Alone Carrier-Box

Figure 3.5: Example trajectories in the THOR-MAGNI dataset. Left: partici-
pants undertake tasks according to their roles, tailored for industrial settings:
visitors navigate individually and in groups between the various goals in the
environment, and carriers transport boxes, buckets, and large objects. Right:
overview of trajectories in Scenario 2 during a four-minute run. In this sce-
nario, the mobile robot remains stationary, performing as an additional static
obstacle.

—— Visitors-Group ~ —s— DARKO Robot Carrier-Bucke! | —— Visitors-Group ~ —s— DARKO Robot Carrier-Bucke!
—— Visitors-Alone —— Carrier-Large Object Carrier-Box —— Visitors-Alone —— Carrier-Large Object Carrier-Box

Figure 3.6: Summary of trajectories in Scenario 3A (left) and Scenario 3B
(right) during a single 4-minute run. Both scenarios feature the same obstacle
layout but differ in the robot’s navigational style: in Scenario 3A, the robot
uses differential driving, while in Scenario 3B, the robot uses omnidirectional
driving, yielding smoother movement. Each trajectory is color-coded according
to the participant’s role and the robot’s identifier.

conditions as in Scenario 2 (see Fig. 3.6). Although this scenario provides valu-
able insights into how varying robot motion styles influence human behavior
in shared environments, this thesis focuses on the study of human roles in the
presence of a mobile robot.
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3.2.3 Participants Background and Priming

The participants have an average age of 30.2 years (SD = 6.7), indicating a
relatively homogenous age distribution. The dataset reflects a balanced gen-
der representation, with 40 participants comprising 21 males and 19 females.
Geographically, 23 participants are from Sweden, while 10 are from other Eu-
ropean countries, including the Czech Republic, Spain, Germany, and Italy,
ensuring diverse European representation. The remaining 7 participants come
from countries in Asia, Africa, and South America, providing broader interna-
tional diversity. Participants were recruited from various areas of the Orebro
University campus, and their educational backgrounds varied substantially in
terms of academic degrees and fields of study. At the beginning of each record-
ing day, we provided standardized information to all participants to ensure un-
biased and natural behaviors. The instructions emphasized the experiment’s
focus on testing the robot’s perception of humans, involving tasks such as
navigating the laboratory and executing physical activities, with an estimated
duration of 15 minutes. Additionally, participants completed a demographic
questionnaire, which we used to create diverse group compositions, aiming for
optimal allocation of eye-tracking devices across different roles. For example,
in groups of two or three participants, only one participant was equipped with
an eye tracker, and at least one carrier was selected to wear the device.

After each run, participants completed the raw version of the NASA Task
Load Index (RTLX) [40, 39]. The scale consists of a 21-point set of subscales
[1 = low; 21 = high], each of which assesses the mental demand, physical de-
mand, temporal demand, and frustration produced by the task as reported
by the participant, as well as their self-perceived performance and frustration.
After each session of the last run of Scenarios 3 and 5, participants complete
two additional mobile robot questionnaires. First, they filled out the Godspeed
Questionnaire Series [6], a semantic differential set of subscales [5-point] that
measures participants’ perceptions of the robot in terms of anthropomorphism,
animacy, likeability, perceived intelligence, and perceived safety. Second, they
completed a 5-point Likert scale [1 = strongly disagree; 5 = strongly agree]
to assess trust in the robot in industrial human-robot collaborations [18]. All
questionnaires were completed on paper. Ethics approval was not required for
our data collection in accordance with institutional guidelines and the Swedish
Ethical Review Act (SFS number: 2003:460). Written informed consent was
obtained from all participants prior to their participation. Additionally, due
to the low weight of the robot and objects involved, combined with the imple-
mentation of comprehensive safety precautions, there was no risk of harming
the participants.
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3.3 Development Tools

Most existing datasets in the field lack a dedicated toolbox for streamlined
visualization and preprocessing. Addressing this gap, we contribute a set of
data visualization tools, including a dashboard, and introduce a specialized
Python package named thor-magni-tools. This package facilitates the filtering
and preprocessing of raw trajectory data, enhancing the accessibility and us-
ability of the THOR-MAGNI dataset. By making these resources available,
we aim to provide researchers with versatile and fast means to analyze and
extract valuable insights from the dataset.

3.3.1 Data Visualization

To provide researchers and users with an intuitive interface for the explo-
ration of human movement, gaze patterns, and environmental perception of
the THOR-MAGNI dataset, we made a set of visualization tools publicly
available®. Our visualization dashboard provides a user-friendly interface with
multiple interactive components. The dashboard includes the following key
features:

1. Trajectory visualization: Users can visualize agents’ trajectories in
2D or 3D space. The trajectories are color-coded to represent different
agents, allowing the user to identify patterns and variations.

2. Velocity profiles: The dashboard also displays velocity profiles corre-
sponding to each trajectory, allowing users to analyze speed variations
during different movement phases. This feature helps to understand the
dynamics of human movement under different conditions.

3. Eye-tracking data alignment: Gaze data is overlaid on the 3D tra-
jectories, providing insights into visual attention during different motion
phases. Researchers can explore how gaze patterns align with specific
trajectory segments, promoting the study of the cognitive processes un-
derlying human actions.

4. Lidar data visualization: Lidar sensor data is presented in a 3D format
to show the environmental context of human motion. This information is
critical for studying lidar-based human detectors onboard mobile robots,
especially in complex environments like THOR-MAGNI.

In addition to data visualization, our dashboard contains concise scenario
descriptions. Each scenario represents a unique context in which human mo-
tion data was captured (described in Sec. 3.2.2). These descriptions include
information such as the physical environment, task objectives, social interac-
tions, and specific conditions imposed on the participants (e.g., transporting

Shttps://github.com/tmralmeida/magni-dash/tree/dash-public
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objects between two goal points). Understanding these scenarios is vital for ac-
curately interpreting the data and ensures that researchers can contextualize
their analyses effectively.

3.3.2 Data Filtering and Preprocessing with thor-magni-
tools

To facilitate the use of the agents’ trajectories in our dataset, we developed
the thor-magni-tools Python package®, a tool designed specifically for filtering,
preprocessing, and visualizing trajectory data. This tool focuses primarily on
mitigating tracking issues arising from the motion capture system, enhancing
the data quality for downstream tasks, and studying novel trajectory pre-
diction methods. It also provides a visualization tool tailored explicitly for
eye-tracking and motion trajectory data visualization (see Fig. 3.7).

To filter 3D trajectory data, we provide two methods: (1) using the most
reliable marker, i.e., the marker of each helmet with the highest number of
tracking locations, and (2) restoring the helmet tracking based on the average
of the tracking locations of each marker. Both approaches offer a trade-off
between tracking quantity and quality. The method based on the best marker
produces smoother trajectories since it depends on a single marker. Conversely,
the method averaging the positions of all visible markers generates longer
trajectories but with increased jerkiness, as it incorporates data from multiple
markers, which can vary. However, this jerkiness can be alleviated by applying
a moving average filter in subsequent processing stages. Fig. 3.8 shows an
example of the two methods applied on THOR-MAGNTI trajectory data.

For both 3D and 6D tracks (X, Y, Z, and 3D orientation), we provide an
interpolation method based on a predefined maximum number of positions in
the absence of tracking. This method is used to fill in the missing data points
while maintaining the integrity of the motion patterns and ensuring continu-
ity in the trajectories. An example of the interpolation of a trajectory based
on thor-magni-tools is depicted in Fig. 3.9. Finally, this tool offers optional
preprocessing steps, including downsampling and signal smoothing through a
moving average filter, further refining the processed trajectories.

3.4 Results and Analysis of Trajectory Data

This section presents a comparison with popular human trajectory datasets,
specifically the ETH/UCY benchmark and THOR, with our THOR-MAGNI
dataset. Our analysis encompasses a multidimensional evaluation, covering var-
ious facets of the data recordings. These include trajectory continuity, social
proxemics delineating interpersonal interactions, and motion trajectory cues

Shttps://github.com/tmralmeida/thor-magni-tools
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Figure 3.7: Visualization tool provided in thor-magni-tools. Top: head orien-
tation (RGB reference frame) and 3D gaze vector (black arrow). Bottom: 2D
gaze points (red dots) overlaid on egocentric videos.

such as velocity profiles and trajectory linearity. This comparison aims to situ-
ate THOR-MAGNI among its predecessors, showing its potential for advancing
human motion trajectory analysis and human-robot interaction research.

3.4.1 Metrics

To evaluate the trajectory data of our dataset in comparison to previous data
collections, we employ metrics proposed by Rudenko et al. [83] and Amirian et
al. [1]:

e Tracking duration (s) represents the average duration of continuous
tracking for all human agents. A higher value indicates longer tracking,
which is favorable for long-term human motion prediction methods.
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Figure 3.8: Filtering methods in a 4-minute recording from Scenario 1. Left:
trajectories filtered using the most reliable marker. Right: trajectories fil-
tered using the average of the tracking locations of each marker. Although
the average tracking markers method provides longer tracks, it induces jerkier
trajectories, especially near the boundaries of the motion capture volume (e.g.,
bottom left and top right).

Helmet 7
Visitors-Group

> T

Figure 3.9: Example of a 4-minute Helmet trajectory in Scenario 1. Left:
raw trajectory data depicting gaps, especially around extreme environmental
locations. Right: post-processed tracing with 100 maximum positions without
tracking (1s) interpolation, showcasing enhanced continuity and completeness
in the trajectory.

e Minimal distance between people (m) measures the minimum dis-
tance observed between individuals in the dataset. It provides insights
into the proximity of human agents during their interactions, offering
valuable data for studies related to personal space (proxemics) and so-
cial dynamics.
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e Number of 8-second tracklets counts the non-overlapping tracklets
of 8-second duration after downsampling to 0.4s and applying a mov-
ing average filter. These choices align with current trajectory prediction
benchmarks such as those outlined in [52]. These tracklets offer discrete
temporal segments for analysis, ensuring compatibility with existing eval-
uation standards in trajectory prediction.

e Motion speed (m/s) represents the velocity of all human agents. A
higher standard deviation in motion speed indicates a diverse range of
behaviors within the dataset. This diversity is essential for capturing
various trajectory patterns and improving robustness in trajectory pre-
diction models. This metric is computed in the 8-second tracklets.

e Path efficiency measures the linearity of trajectories in the dataset,
ranging between 0 and 1 [1]. It is calculated by dividing the distance be-
tween the first and last points by the total navigated distance. A lower
coeflicient indicates more complex and non-linear trajectories. This met-
ric is also computed in the 8-second tracklets.

3.4.2 Comparison with State-of-the-Art Datasets

We compare our dataset with the THOR dataset and the ETH/UCY trajectory
prediction benchmark. The THOR dataset encompasses three distinct scenar-
ios, each featuring participants performing different tasks such as individual
and group movement, box transportation, different amounts of obstacles, and
a mobile robot in the environment. In THOR Scenario 1 (THOR-S1), partic-
ipants navigate the environment with one static obstacle. THOR Scenario 2
(THOR-S2) introduces a mobile robot navigating around the static obstacle
while participants continue their tasks. Finally, in THOR Scenario 3 (THOR—
S3), the mobile robot becomes a static obstacle, and an additional obstacle is
added to the scene. The ETH/UCY trajectory prediction benchmark consists
of five scenes: ETH, HOTEL, UNIV, ZARA1, and ZARA2. These scenes rep-
resent five outdoor public spaces that capture natural human motion patterns,
resulting in a benchmark widely used by the human trajectory prediction com-
munity [85, 28, 103].

Firstly, we show the tracking durations in Fig. 3.10. THOR presents con-
sistent average tracking durations around 15.5 to 17.6 seconds across the three
scenarios. In contrast, THOR-MAGNI shows wider variations. For instance,
Scenario 4 features longer tracking durations (averaging 41.3 seconds), whereas
Scenario 2 has the shortest durations (averaging 17.1 seconds). This variabil-
ity can be attributed to participants’ density; Scenarios 4-5, involving fewer
human agents in a smaller space, may contribute to higher quality tracking.
Nevertheless, THOR-MAGNI has comparable or higher tracking time than
THOR. Furthermore, compared to the ETH/UCY benchmark (i.e., ETH, HO-
TEL, UNIV, ZARA1, and ZARA2 scenes), THOR-MAGNTI offers comparable
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Figure 3.10: Tracking durations (mean =+ one standard deviation) across
datasets in seconds. Scenarios 1-3 of THOR-MAGNI provide comparable
tracking durations to previous datasets, while Scenarios 4 and 5 provide longer
tracks.
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Figure 3.11: Minimal distance between people (mean + one standard devi-
ation) across datasets in meters. Lower spatial navigational freedom in Sce-
narios 1-3 of THOR-MAGNI potentiates reduced social distances between
participants. These results are more consistent with the ZARA1 and ZARA?2
scenes, while Scenario 4 and 5 (with more spatial freedom) show similar results
to THOR, ETH, and HOTEL datasets.

or longer tracking durations. This comparison makes our dataset more valuable
than its predecessors for long-term human motion prediction and human-robot
interactions.

Secondly, we compare the minimal distance between people in Fig. 3.11.
Again, human density plays an important role: THOR-MAGNI Scenarios 1-
3 show low values comparable to those in ZARA1/ZARA2, indicating more
proximity between humans, while Scenario 4 and 5 reach values similar to
THOR, ETH, and HOTEL. The higher participant density in THOR-MAGNI
Scenarios 1-3 reduces spatial navigational freedom, increasing interactions and
decreasing social distances between individuals.

Thirdly, the motion speed statistics are shown in Fig. 3.12. Despite the
higher participant density in Scenarios 1-3 of THOR-MAGNI, these datasets
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Figure 3.12: Motion speed (mean =+ one standard deviation) for 8-second track-
lets across datasets in meters per second.

feature faster human agent navigation than THOR and akin to those in ETH,
HOTEL, and ZARA1 scenes, possibly influenced by the task of object trans-
portation, impacting their velocity profiles. Participants in Scenarios 4-5 of
THOR-MAGNTI have an average velocity similar to those in THOR, UNIV,
and ZARA2. Also, generally, THOR-MAGNI shows comparable standard de-
viations in motion speeds, indicating diverse and varied movement patterns
among human agents. The similarity of the velocity profiles to previous datasets
suggests that our dataset is also natural and diverse.

Finally, we compare path efficiency and the number of tracklets in Fig. 3.13.
Regarding trajectory linearity, Scenarios 1-3 are aligned with the THOR and
HOTEL datasets, while the other datasets from the ETH/UCY benchmark
contain more linear and less complex trajectories. It is also worth noting that
THOR-MAGNI Scenario 4 and 5 display the lowest average metrics (0.78 and
0.75, respectively). The presence of a moving robot might influence these sce-
narios, prompting human agents to navigate cautiously and align their motion
with the robot’s motion profile. Furthermore, THOR-MAGNI presents a much
higher number of non-overlapping tracklets than the other datasets.

These distinctive features make our dataset uniquely challenging, diverse,
and valuable as a benchmark for evaluating human trajectory prediction meth-
ods. The heightened complexity and diverse range of trajectories in THOR-
MAGNTI can provide a robust a platform for assessing the effectiveness of
trajectory prediction methods, thereby increasing the breadth and depth of
research in this area.

3.5 Conclusion

In this chapter, we presented THOR-MAGNI, a comprehensive human and
robot navigation and interaction dataset, extending THOR with 3.5 times
more motion data, novel interactive scenarios, and rich contextual annotations.
Both datasets are accessible online at http://thor.oru.se/. To further sup-
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Figure 3.13: Top: path efficiency (mean + one standard deviation) across
datasets, where lower results mean more linear trajectories. Bottom: number
of non-overlapping 8-second tracklets per dataset. THOR-MAGNI provides
the highest amount of non-linear trajectories.

port researchers, THOR-MAGNI comes with a dedicated set of user-friendly
tools: a dashboard and a specialized Python package called thor-magni-tools
specifically designed to streamline the visualization, filtering, and preprocess-
ing of raw data. These resources aim to improve the accessibility and usability
of the THOR-MAGNI dataset.

We created THOR-MAGNTI to fill a gap in human motion analysis datasets,
limiting HRI research: a lack of comprehensive inclusion of exogenous factors
and essential target agent cues hinders holistic studies of human motion dy-
namics. Unlike existing datasets, THOR-MAGNI includes a broader set of
contextual features and offers multiple variations to facilitate factor isolation.
Our dataset integrates different modalities, such as walking trajectories, eye-
tracking data, and environmental sensory inputs captured by a mobile robot.

The THOR-MAGNI dataset has already been used in research papers,
demonstrating its usefulness for training class-conditioned trajectory predic-
tion models as described in Chapter 4 and investigating visual attention during
human-robot interaction and navigation in shared environments with robots [87].
Furthermore, we set a THOR-MAGNI trajectory prediction challenge on the
Long-term Human Motion Prediction Workshop - ICRA 20247. We set the
benchmark to test the generalization capabilities of trajectory prediction mod-

"https://motionpredictionicra2024.github.io/challenge.html
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els in diverse indoor environments. To that end, we provide the five scenarios
with unique obstacle layouts, trajectory patterns, and human roles. Out of
those, four should be used for training and validation, and the remaining one
should be used for testing.

We aim to study trajectory classes to enhance trajectory prediction in vari-
ous settings. THOR-MAGNI addresses the gap in the literature, where labeled
motion trajectory datasets of heterogeneous agents in industrial environments
are scarce, by incorporating human roles that are semantically linked to indus-
trial tasks. The diversity of human roles, especially in Scenarios 2—3, fosters the
research of class-conditioned trajectory prediction methods in those industrial
environments. We take these steps in Chapter 4, where we leverage THOR-
MAGNT to explore how observable classes (in this case represented by human
roles) can improve trajectory prediction. Specifically, we conduct a compre-
hensive performance analysis of trajectory prediction methods under different
data conditions, including class imbalance and low-data regimes.



Chapter 4

Trajectory Prediction with
Observable Classes

Forecasts usually tell us more of the forecaster than of the future.
— Warren Buffett

Observable classes represent semantic attributes that categorize moving
agents, such as tasks, roles, or other agent-specific characteristics that may
influence their dynamics. When these attributes affect the dynamics of those
agents, class-conditioned trajectory predictors become appealing for achieving
more accurate predictions. By conditioning on observable classes, forecasting
uncertainty is reduced, as the predictor is constrained to forecast the trajectory
of a specific class, narrowing the input data distribution to a defined subset.
However, class-conditioned trajectory predictors still need to be explored in the
literature, particularly in mobile robot applications and limited data scenar-
ios, primarily due to the scarcity of relevant datasets. This chapter presents a
performance analysis of class-conditioned trajectory prediction methods using
two datasets, including the previously introduced THOR-MAGNI dataset de-
signed for indoor mobile robot environments and the Stanford Drone Dataset
(SDD) for outdoor environments. We propose a range of efficient deep learn-
ing methods conditioned on observable classes, evaluate their performance on
the two datasets, and compare them to a pattern-based predictor. The results
demonstrate that conditioning on class labels generally enhances prediction
accuracy. More importantly, we observe variations when training with imbal-
anced datasets or in new environments where data is limited. Specifically,
our findings indicate that deep learning methods perform well with balanced
datasets. However, in scenarios with limited data, such as a robot’s cold start
in an unfamiliar environment or when classes are imbalanced, pattern-based
methods may be more effective.

59
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4.1 Introduction

4.1.1 Motivation and Contributions

In the context of mobile robots in indoor dynamic environments, prior art has
yet to explore prediction approaches that are aware of observable classes. This
is particularly evident given that human motion trajectory datasets annotated
with observable classes are still rare in indoor robotics settings (see Chapter 3).
Moreover, existing heterogeneous trajectory prediction methods tailored for
autonomous driving do not transfer well to robotics settings, as they depend
on domain-specific contextual features [14]. Furthermore, robotics applications
present unique challenges, such as the cold-start scenario, where a robot en-
ters and continuously navigates a previously unseen environment with limited
data [23]. Additionally, both robotics and autonomous driving domains may
feature non-uniform class distributions, leading to decreased performance of
deep learning-based methods [55]. It is crucial to understand whether pre-
diction methods can benefit from class representations in applications with
scarce or imbalanced data, and if so, to what extent and under which specific
circumstances.

This chapter presents an in-depth study of class-conditioned trajectory pre-
diction methods under different training data conditions. To that end, we an-
alyze class-conditioned methods that are transferrable to other environments,
allowing for applicability across different settings. We adapt several deep learn-
ing methods to include class labels and compare them to a pattern-based ap-
proach, CLiFF-LHMP [107], which uses Maps of Dynamics [56] (MoD). We
argue that these methods are well-suited for application in new environments
to support safe mobile robot navigation. Specifically, we evaluate four deep
learning models such as LSTMs, Transformers, GANs, and VAEs, along with
their respective conditional counterparts, on two datasets of human trajec-
tory data in indoor settings (THOR-MAGNI) [86] and road agent trajectories
(Stanford Drone Dataset) [79]. We chose SDD and THOR-MAGNI due to their
distinct characteristics: imbalanced outdoor road agents and balanced human
tasks in an indoor robotics environment, respectively.

In contrast to previous methods [67, 33, 72|, our proposed deep learning ap-
proaches are both memory and energy-efficient as they do not require training
or running individual modules per class. We assess their performance across
diverse training data conditions, considering both balanced and imbalanced
datasets (where class proportions are uniform and non-uniform, respectively),
as well as various amounts of training data. The study of imbalanced datasets is
important as deep learning methods may struggle to predict underrepresented
classes, which is particularly impactful when these classes represent vulnerable
road users such as pedestrians. The study of various training data amounts
reflects a practical challenge in mobile robotics, where the system is deployed
in new environments with limited acquired data, yet requiring anticipation of
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other agents’ movements for safe navigation. Through this comparative study,
we aim to show the preferred methods for specific settings, quantifying their
performance in different data regimes and class-imbalanced datasets.

In summary, we make the following contributions:

e We establish a set of deep learning-based trajectory prediction baselines!
for outdoor mixed traffic scenarios (SDD) and an indoor mobile robots
dataset (THOR-MAGNTI) to solve the O-TP task defined in Sec. 1.2.

e We analyze the performance of four deep learning methods against a
pattern-based approach (MoD) that considers observable classes in THOR-
MAGNTI and SDD.

e We show that class-conditioned methods often outperform their un-
conditional counterparts. In addition, we show that MoD approaches
are preferable over the deep generative methods for class-imbalanced
datasets and superior to single-output deep learning methods in low data
regimes.

4.1.2 QOutline

The chapter is organized as follows: in Sec. 4.2, we formalize the problem
of class-conditioned trajectory prediction. Sec. 4.3 details the deep learning
methods employed in this study. Sec. 4.4 outlines the datasets, implementa-
tion specifics of the trajectory prediction models, and the evaluation metrics
used in our performance analysis. Finally, Sec. 4.5 presents a quantitative and
qualitative assessment of the proposed methods across the evaluated datasets
as well as a detailed analysis of the limitations of observable classes, and the
chapter concludes in Sec. 4.6.

4.2 Problem Formalization and Notation

In this section, we introduce notation and formalize our trajectory prediction
task: class-conditioned trajectory prediction with observable classes (O-TP).
Following the introductory problem formalization in Sec. 1.2, each agent, A; in
a heterogeneous trajectory dataset, is associated with an observable class c4;.
The trajectories of each agent are transformed into tracklets of fixed-length
S = (s1)%,, where s; = (,y,,7) for environment-aware formulations and
st = (&, 9) for environment-agnostic formulations. Velocity is decomposed into
2D speed and orientation for the MoD approach. The future of an observed
tracklet consists of 2D velocities, Yg = ((2, y't))tTjO+1 of length L =Tp — O,

LCode available at https://github.com/tmralmeida/class-cond-trajpred
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which are subsequently converted into future positions Pg. Therefore, for the
O-TP task, the goal is to predict the future of a tracklet through:

VYp: Sk, ca, — Ys,, (4.1)

where Yg, is the future corresponding to the tracklet Sy of a particular agent
Ay, with class ca, . In this work, ¢, can be a deep learning architecture or a
MoD-based trajectory predictor such as CLIFF-LHMP [107].

4.3 Deep Learning Methods

This section presents the deep learning methods to learn the prediction task
defined in Sec. 4.2. Our analysis covers single-output trajectory predictors,
including the Long Short-Term Memory (LSTM) approach, specifically the
RED method [7], and a Transformer-based model (TF) inspired by [35]. We
also explore multiple-output approaches, such as Generative Adversarial Net-
works (GANs) following the framework in [51] and Variational Autoencoders
(VAEs) based on [85]. Single-output methods generate one deterministic tra-
jectory for the future, while multiple-output models produce multiple plausible
trajectories that reflect the variability of the training dataset’s distribution (see
Sec. 1.2.2). We then extend these methods to their class-conditioned versions:
cRED, cTF, cGAN, and cVAE, where the class identifiers are mapped through
a class embedding layer CEemb to generate dense feature representations. Us-
ing an embedding layer offers several advantages over sparse representations,
such as one-hot encodings: (1) improved memory efficiency by representing
categorical inputs as dense vectors instead of high-dimensional sparse ones,
and (2) the capacity to exploit potentially non-orthogonal continuous vector
representations that can capture semantic relationships between classes.

The mapping 1, presented in Sec. 4.2 has two variants: 1), for single-
output methods and 9}, for multiple-output methods. Single-output methods
consist of an embedding layer Emb, followed by a temporal encoder Enc, and
a decoder Dec, represented as:

Ysp(S, ¢) = Dec((Enc o Emb(S)) & CEmb(c)). (4.2)

In multiple-output methods, ¥, incorporates a noise vector (z) to introduce
variability in the output, expressed as:

Ymp(S, ¢,z) = Dec((Enc o Emb(S)) & CEmb(c) ® z). (4.3)

In all models, the embedding and decoder layers are implemented using
multilayer perceptrons (MLPs), while the temporal encoder may vary, using
either an LSTM or a Transformer-based encoder.
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Figure 4.1: Single-output unconditional and conditional methods (dashed ar-
rows). The input state S is first projected into a fixed-length vector via the
embedding module Emb, then processed by the temporal feature encoder Enc.
Finally, the decoder Dec maps the encoded features to the predicted future
velocity vector Ys. In conditional models, a class embedding layer CEmb ex-
tracts a dense representation, which is concatenated with the encoded temporal
features before decoding.

4.3.1 Single-Output Methods: LSTMs and Transformers

The first step is embedding the input state representation S using an MLP
network. Conditioned methods, cRED and cTF, also embed the integer class
label ¢ with an embedding layer. Subsequently, for RED and cRED, the em-
bedded input vector passes through an LSTM layer, while for TF and ¢TF, the
encoded input vector undergoes a Transformer-based encoder. An MLP-based
decoder then generates the predicted sequence of velocity vectors from the
encoded vectors. For conditional variants (cCRED and ¢TF), class embeddings
are concatenated with the temporal features before decoding. The entire pro-
cess is illustrated in Fig. 4.1. We train single-output networks with the Mean
Squared Error (MSE) loss:

Tp
. 1 o
Lysk(Ps, Ps) = I Z Ip; — bsll2, (4.4)
j=0+1
where Pg represents the estimated sequence of positions, p; = (z,y) the

ground truth 2D position at time step j and p; the corresponding prediction.
The training data for these methods, {(Sg,ca,,Ps,)}x, consists of triplets
of tracklets, ground truth class labels, and the corresponding ground truth
positions.

4.3.2 Multiple-Output Methods: GANs and VAEs

The training data for multiple-output methods, (S,ca,,Ys,,Ps,),, com-
prises quadruples of observed tracklets, ground truth class labels, future track-
lets, and corresponding ground truth positions. The future tracklets Yg, per-
tain to the input for training auxiliary networks: the discriminator in GANs
and the recognition network in VAEs. Further details are provided in the sub-
sequent sections.
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GAN-based Trajectory Predictors

A GAN aims to reconstruct the generative process of the underlying input
data using two modules: the generator (G) and the discriminator (D). The
generator maps the input S and a latent random vector zq to a realistic future
sequence of velocities Yg. We sample the latent vector from a standard normal
Gaussian distribution. Simultaneously, the discriminator differentiates between
both real and generated future velocity vectors, Ys and YS, respectively.
This adversarial training scenario is essential for producing multiple plausible
future trajectories. In cGAN, the generator and discriminator incorporate the
trajectory class as an additional input. We optimize the GAN and ¢cGAN
discriminators using the binary cross-entropy loss, while the GAN generator
is optimized with a weighted sum given by:

La(¥.¥) = Mbus + e (HEID(Y) - 12+ JBIDVP) . (49

2
where A; and Ay are the weights applied to the MSE term (Eq. (4.4)) and to
the GAN loss, respectively. For the conditional variant (cGAN), the class is
additionally fed as input to both the generator and the discriminator, resulting
in the following loss function:

£oa(6 YY) = by + o (GEIDY) - 1] + GEID V) . (40

Fig. 4.2 illustrates the network configurations for GAN and cGAN models.
The generators generally have the same layer configuration as the TF model.
The difference is the latent vector, zg, which is concatenated with the tem-
poral features from the Transformer and passed to the decoder. Analogous
to [51], the discriminator comprises a Transformer-encoder network and an
MLP in the last layer. For cGAN, both the generator and the discriminator
concatenate S to the agent’s class embedding. The generator also concatenates
the class embeddings to the input of the decoder. For GAN-based predictors,
the generator can be seen as the network providing the 1y,, mapping.

VAE-based Trajectory Predictors

VAE-based predictors consist of two main networks: the prior network py and
the recognition network g,. The prior network maps the input state S and a la-
tent vector zy to the predicted future tracklet Ys. In contrast, the recognition
network learns to map the ground truth Yg to the parameters of a Gaussian
distribution, representing a lower-dimensional latent space. We adopt a stan-
dard normal Gaussian as the prior for the distribution of future trajectories.
The Kullback-Leibler (KL) divergence is used to align the learned distribution
to the prior, contributing to the VAE’s loss function:

Lv(zv,Ys,S) =1 Luse — B2 (Dxulde(zv|Ys)|pe(zv|S)]) . (4.7)
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Figure 4.2: GAN-based models: unconditional GAN (left) and conditional
cGAN (right). In the generator (yellow boxes), the input state (S) is em-
bedded via Emb, resulting in a fixed-length vector, which is then processed
by the temporal feature encoder Enc. The decoder Dec combines the encoded
temporal features with a latent vector (zg) to generate the predicted future
velocity vector (YS) For conditional models, the class embeddings are con-
catenated with the temporal features and the noise vector before being passed
through the decoder. In the discriminator (blue boxes), the future ground truth
velocity vector (Yg) or the predicted velocity vector (Yg), concatenated with
class embeddings for conditional models, is processed through a Transformer-
based encoder and an MLP to classify the input as real or generated.

where 7 and By are the weights applied to the MSE and KL terms, respec-
tively. For the conditional variant (cVAE), the agent’s class is added as input
to both py and g4, resulting in the following loss function:

Lev(zv,Ys,8,¢) = B Luse — B2 (DxiLlge(zv]Ys, c)lpe(zv]S,c)]), (4.8)

Fig. 4.3 shows the network configurations for the VAE and ¢cVAE models.
The predictor’s network (prior network and decoder) configuration is identical
to the generator in the GAN and ¢cGAN models. The difference lies in the
training process, where the latent vector zy is sampled based on parameters
generated by the recognition network (g4). The recognition network processes
the ground truth prediction akin to py but concludes with two linear layers
producing the Gaussian parameters. For VAE-based predictors, pg followed by
the decoder can be seen as the architecture providing the v, mapping.

4.4 Experiments

This section presents experiments conducted to analyze the impact of observ-
able classes (i.e., roles and agent classes) on trajectory prediction accuracy. We
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Figure 4.3: VAE-based models: unconditional VAE (left) and cVAE (right).
The recognition network (g4, shown with a dashed border) is used exclusively
during training. In the prior network, the input state (S) is embedded into a
fixed-length vector via Emb, which is then processed by the temporal feature
encoder Enc. The decoder Dec combines these encoded temporal features with
a latent vector (zy) to generate the predicted future velocity vector (Yg).
During training, the latent vector is derived from the recognition network, g4,
while during inference, it is sampled from a standard Gaussian distribution.
The recognition network processes the ground truth future velocity vector
(Ys) to produce the parameters of a Gaussian distribution.

begin by outlining the experimental setup, including data preprocessing and
baseline models. We then describe the implementation details of the quantita-
tive and qualitative experiments and the evaluation metrics used to assess the
predictors’ performance.

4.4.1 Datasets and Baselines

In this study, we evaluate and compare the performance of the trajectory pre-
diction methods described in Sec. 4.3 on two datasets, THOR-MAGNI [86] and
SDD [79]. These datasets represent distinct environments, with SDD situated
in an outdoor university campus and THOR-MAGNTI in an indoor robotics set-
ting (see Chapter 3 for a detailed description). Both datasets contain various
classes of agents: THOR-MAGNI comprises human-centered agents in an in-
dustrial environment, whereas SDD includes road agents. Importantly for our
analysis, the two datasets show a substantial difference in class proportions,
as illustrated in Fig. 4.4. Specifically, SDD shows class imbalance compared
to THOR-MAGNTI. This inter-dataset class imbalance poses challenges to ac-
curate trajectory prediction. We analyze how these challenges are handled by
the two categories of predictors: deep learning models and MoD approaches.



4.4. EXPERIMENTS 67

6ol mmm SDD
X w2 THOR-MAGNI
c 501
2
£
S 401
o
o
o 30 A
%]
g 20 A
n
o
Q 101
0-

P B C CBo CBu VA VG CLO

Figure 4.4: Agent class distribution in SDD (left blue) and THOR-MAGNI
(right orange with oblique lines). In SDD, the Pedestrian class (“P”) is
the most representative, followed by the Byciclist class (“B”), with the Car
class (“C”) being the least representative. In the THOR-MAGNI dataset, class
proportions are more uniform, with the Carrier—Large Object (“CLO”) being
the most prevalent, followed by Visitors—Group (“VG”), Visitors—Alone (“VA”),
Carrier—Bucket (“*CBu”) and Carrier-Boz (CBo).

THOR-MAGNI

The THOR-MAGNTI dataset, described in detail in Chapter 3, is of particular
interest in this work as it captures human motion trajectories in a robotics
environment where participants perform various tasks, such as moving objects
like boxes, buckets, and poster stands. This study focuses on Scenarios 2,
3A, and 3B, including data from 30 participants over 1.5 hours of recorded
motion. Five distinct agent roles are recorded in these scenarios: Carrier—
Large Object, Visitors—Group, Visitors—Alone, Carrier—Bucket, and Carrier—
Boz, with corresponding sample proportions of 25.7%, 23.6%, 22.7%, 14.1%,
and 13.9%. These roles are associated with different physical tasks, influencing
the corresponding motion patterns, especially the velocity profile. Specifically,
Tab. 4.1 summarizes the data, showing the number and percentage of 20-
time-step trajectories and velocity statistics per role across scenarios. A broad
look at this table shows that participants within the same role tend to move
at similar velocities across different scenarios. However, if we compare the
roles within each scenario, we can observe that the Carrier—-Bucket (small
object) moves the fastest, followed by the Carrier—Box. On the opposite side
of the spectrum, Carrier—Large Object is the slowest role. This is expected
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Role | Magni-S2  Magni-S3A  Magni-S3B
Carrier— | 223 (14.13%) 224 (13.74%) 220 (13.70%)
Boz 1122 +£0.21 1.152 £0.27 1.082 +0.26
Carrier— | 224 (14.20%) 226 (13.87%) 227 (14.13%)
Bucket 1212 £0.24 1.217+£0.20 1.132 +0.18
Carrier— 394 (24.97%) 440 (26.99%) 405 (25.22%)
Large Object | 0.722 £0.27 0.682 £0.32 0.762 £ 0.36
Visitors— | 452 (28.64%) 318 (19.51%) 322 (20.05%)
Alone 0.952 +£0.20 0.922 +0.29 0.872 +0.32
Visitors— | 285 (18.06%) 422 (25.89%) 432 (26.90%)
Group 0.92™ +0.31 0.87 +£0.26 0.847 +0.31
Global 1578 (100%) 1630 (100%) 1606 (100%)
0.952 +£0.51 0.912 £0.48 0.902 +0.48

Table 4.1: Data summary per role in our experiments: number and ratio of
20-time steps tracklets, velocities average and standard deviation.

as transporting a small object implies less effort than moving a bigger object
like a box. Moreover, a group of two people moves a poster stand (a large
object), which entails a team effort and, therefore, a slower pace. Finally,
it is worth highlighting that, on average, Visitors—Group move slower than
Visitors—Alone, reflecting the influence of group dynamics on movement speed.

Stanford Drone Dataset

SDD encompasses 5 hours of heterogeneous trajectory data from 60 videos on
the Stanford University campus. It includes trajectory data on cyclists, pedes-
trians, skateboarders, carts, cars, and buses. Notably, certain classes such as
Bicyclist and Pedestrian coexist in shared spaces (see Fig. 4.5) but exhibit dis-
tinct movement patterns (e.g., bicyclists typically move faster). The dataset
provides agent coordinates in pixel values. For our evaluation, we choose videos
that contain at least two classes of agents and have more than 10 trajectories
per class, resulting in 7 scenes (gates, little, nexus, coupa, bookstore, death-
Circle, hyang) and three agent classes: Pedestrian, Bicyclist and Car with
corresponding sample proportions of 64.6%, 34.3%, and 1.1%.

Baseline Models

We compare the performance of our deep learning class-conditioned predictors
with the following baselines: unconditional deep learning models (i.e., with-
out class conditioning) and MoD-based predictors. We also include a class-
conditioned version of the MoD-based predictor, which we refer to as cMoD.
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Figure 4.5: Example of trajectory data in SDD (deathCircle scene) for the
three classes evaluated in this work.

Maps of Dynamics encode spatial or spatio-temporal motion patterns as a
feature of the environment [56]. By generalizing velocity observations, hu-
man dynamics can be represented through flow models. Prior work proposes
CLiFF-LHMP [107], which exploits MoD for long-term human motion pre-
diction. It uses a multi-modal probabilistic representation of a velocity field
(CLiFF-map), which is built from observations of human motion, and employs
Semi-Wrapped Gaussian mixture models (SWGMM) to capture local velocity
distributions. This method implicitly accounts for obstacle layouts and predicts
trajectories that follow the environment’s complex topology. CLiIFF-LHMP ex-
cels in predicting up to 50s ahead, [107], even with sparse, incomplete, and
very limited training data [106]. In a class-conditioned CLiFF-map, individual
CLiFF-maps are built for each agent class using their specific trajectories. We
refer the reader to [107] for more details on the CLiIFF-LHMP approach.
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4.4.2 Implementation and Evaluation Details

To evaluate the predictors, we employed a repeated random sub-sampling val-
idation method. For each iteration, we randomly selected ptr% of the dataset
for training and used the remaining (100 — ptr)% for testing. This process was
repeated ten times, with the selection of test and training data being inde-
pendently randomized in each iteration. In the accuracy analysis (Sec. 4.5.1),
we set ptr = 90. In the data efficiency analysis (Sec. 4.5.2), we decreased the
percentage of data used for training from ptr = 90 to ptr = 10 in steps of 10.
Following current trajectory prediction benchmarks [52], we define the obser-
vation length as O = 8 and the prediction horizon as L = 12. To compare the
trajectory predictors, we use the Top-K ADE and FDE, in pixels for SDD and
meters for THOR-MAGNTI, as defined in Eqgs. (1.1) and (1.2). We report both
Top-1 and Top-3 ADE/FDE scores. For Top-1, the single most likely predicted
trajectory is selected, while Top-3 evaluates the best match among the three
predictions. We calculate and report the mean and standard deviation of these
metrics across validation iterations.

For deep learning-based predictors: We maintained a uniform hyper-
parameter setting to ensure a fair comparison. All networks were trained for
up to 100 epochs with early stopping if no improvement was observed for 20
consecutive epochs. We optimize the networks with the Adam optimizer [47],
a learning rate of le—3, and a batch size of 32. We also reduce the learning
rate on the plateau of the validation loss during training (patience set to 5
epochs).

For training generative models, including GAN, cGAN, VAE, and cVAE, we
have standardized the weights in their respective loss functions. Consequently,
A1 = 01 = 2 and Ay = B2 = 1, indicating a preference for the reconstruction
of predictions based on the MSE term in the loss functions.

Furthermore, each model receives as input state the position concatenated
with the velocity vector for THOR-MAGNTI scenarios. In contrast, for SDD,
the velocity vector alone is used as input due to the aggregation of diverse
scenes, making the position an irrelevant input feature.

For MoD-based predictors: We use identical parameters for the class-
conditioned and the general CLiIFF-LHMP. The CLiFF-map grid resolutions
for the SDD and the THOR-MAGNI dataset are 20 pixels and 0.2m, respec-
tively. The sampling radius is adjusted for each dataset to match the CLiFF
map grid resolution. The kernel parameter is set to 5 for all experiments. In
the figures and tables presenting the results, CLIFF-LHMP is denoted as MoD,
and class-conditioned CLiFF-LHMP is denoted as cMoD.
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4.5 Results

In our analysis, we aim to (1) quantify the improvement in trajectory pre-
diction performance when using observable classes and (2) evaluate trajectory
prediction performance based on the specific characteristics of the dataset. The
latter provides insights into selecting the most suitable trajectory prediction
method for a given application context.

4.5.1 Accuracy Analysis Conditioned on Class Balance

Tabs. 4.2 and 4.3 show the Top-1 prediction accuracy results separately for each
class on Scenario 2 of the THOR-MAGNI and SDD datasets, respectively. It
also shows the global results for all trajectories (last column for each dataset).
A broad view of the THOR-MAGNT results shows that conditional methods
outperform their unconditional counterparts regardless of the type of method
(deep learning and MoD). This difference is least pronounced when predicting
trajectories from the Visitors—Group. We speculate that this may be because
the motion patterns of these agents are less structured compared to the other
classes, as shown in Fig. 4.6. This also highlights the importance of suitable
class labels, such that each class encompasses specific motion patterns, and
observable classes may not always do so. For the imbalanced dataset (SDD),
deep learning methods face the challenge of identifying a representative number
of different motion patterns across classes. This difficulty is most pronounced in
single-output deep learning methods (RED and TF). In contrast, cMoD is less
sensitive to class proportions and can use class information for more accurate
predictions. In summary, we highlight two key points: (1) the superiority of
deep learning methods over MoD-based approaches in balanced datasets like
THOR-MAGNI, and (2) the appropriateness of conditional MoD over deep
generative methods (cGAN, cVAE) for imbalanced datasets like SDD.

In the MoD-aware predictor, cMoD outperforms general MoD in both
datasets. Prediction accuracy improvements were more pronounced in classes
with distinct motion patterns, such as Carrier-Box and Carrier—Bucket (see
Fig. 4.6 left and Fig. 4.7), which deviate more from the general motion pat-
tern. In SDD, variances in speed are observed among different classes, as de-
picted in Fig. 4.8. A single CLiFF-map struggles to accurately model varia-
tions across multiple classes, leading to inaccurate predictions compared to the
class-conditioned MoD-aware method.

4.5.2 Data Efficiency Analysis

To assess how training data volume affects model performance, we conducted
a data efficiency analysis aimed at identifying the most appropriate models for
various data settings. Fig. 4.9 shows the performance of single-output methods
(RED, TF, and MoD, along with their conditioned variants) in the THOR-
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Table 4.2: Top-1 ADE/FDE scores in THOR-MAGNI Scenario 2 with a 90%
train ratio. Bold values highlight superior performance of conditional models
over their unconditional counterparts.

Carrier- Carrier- Visitors- Visitors- Carrier-

Model Box Bucket Alone Group Large Object Global
RED 0.64+0.07  0.71+£0.06  0.814+0.05 0.72+0.05 0.73+0.05 0.74+0.01
1.2340.14 1.35+0.18 1.5340.12 1.34+0.17 1.4440.12 1.414+0.04
RED 0.60+0.07 0.67+0.06 0.784+0.06 0.72+0.07 0.69+0.03 0.71+0.03
¢ 1.10+0.14 1.21+0.15 1.48+0.13 1.3540.18 1.38+0.10 1.34+0.06
TF 0.66+0.07  0.65+0.05  0.79+0.04  0.7440.06 0.69+0.05 0.7240.02
1.2440.15 1.2440.13 1.524+0.12 1.404+0.15 1.4140.12 1.3940.04
TF 0.60+0.07 0.60+0.06 0.75+0.04 0.68+0.05 0.64+0.04 0.67+0.02
¢ 1.104+0.13 1.12+0.16 1.45+0.14 1.29+0.13 1.31+0.08 1.29+0.05
GAN 0.764+0.07  0.78+0.04  0.88+0.07 0.80+0.08 0.78+0.08 0.81+0.05
1.504+0.19 1.484+0.18 1.72+0.14 1.52+0.15 1.5940.16 1.5940.09
GAN 0.70+0.10 0.73+0.06 0.85+0.08 0.80+0.06 0.75+0.06 0.78+0.05
¢ 1.33+0.19 1.37+0.14 1.67+0.19 1.574+0.16 1.56+0.13 1.53+0.09
VAE 0.68+0.06  0.73+0.09 0.844+0.06 0.78+0.08 0.77+0.07 0.77+0.03
1.31+0.13 1.44+0.20 1.62+0.16 1.59+0.16 1.50+0.15 1.49+0.05
VAR 0.66+0.05 0.74+0.08 0.83+0.05 0.75+0.06 0.72+0.06 0.76+0.02
¢ 1.26+0.11 1.43+0.19 1.61+0.14 1.56+0.13 1.44+0.12 1.47+0.06
MoD 0.814+0.11 0.924+0.18  0.94+0.06 0.82+0.10 0.83+0.10 0.87+0.05
0 1.5940.25 1.78+0.37 1.97+0.20 1.78+0.24 1.73+0.22 1.794+0.10
MoD 0.73+0.07 0.72+0.10 0.92+0.09 0.83+0.10 0.75+0.08 0.80+0.05
cvio 1.40+0.17 1.30+0.17 1.95+0.22 1.80+0.24 1.61+0.19 1.67+0.09

MAGNTI dataset. cMoD outperforms deep learning methods in Top-1 ADE in
low data regimes for all three scenarios, where 10% of data is available during
training. Moreover, performance for deep learning methods declines with less
training data. In contrast, MoD approaches (MoD and ¢cMoD) are more stable
across different data regimes (i.e., they attain consistent performance, not
necessarily superior on all metrics, across all training set ratios). Therefore,
the CLiFF-map efliciently captures major human motion patterns with limited
training data. Beyond a 30% training data increase, CLiFF-map improvements
are less notable, especially compared to the training set expansion from 10% to
20%. Once major motion patterns are captured, the representations stabilize,
and unlike deep learning methods, MoD approaches do not show performance
improvements with more data. This stability highlights the advantage of the
MoD approach when extensive data collection is impractical.

Fig. 4.10 presents the performance of multiple-output methods (VAE, GAN,
and MoD, along with their respective conditioned variants) on THOR-MAGNI
datasets. Deep generative methods are more effective in generating one out of
K = 3 trajectories than MoD-based methods. Fig. 4.11 shows the same per-
formance results on SDD. Contrary to the results in THOR-MAGNTI datasets,
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Table 4.3: Top-1 ADE/FDE scores in SDD with a 90% train ratio. Bold values
highlight superior performance of conditional models over their unconditional

counterparts.

Model ‘ Pedestrian Car Bicyclist ‘ Global
RED 18.63+0.54 8.44+7.48 64.08+2.49 | 33.95+0.91
37.55+1.22  16.63+15.03  137.424+5.31 | 71.23+2.07
RED 18.76+0.54 8.66£7.05 64.384+2.53 34.14+1.00
¢ 37.69£1.08 16.55+£14.30  137.56£4.97 71.38£1.99
TF 18.99+0.89 9.36+6.91 65.33£2.37 34.62+0.90
37.60+£1.76 17.794+14.36  142.084+4.60 72.87£1.70
TF 19.00+0.79 9.6447.62 64.01+2.67 | 34.19+1.00
¢ 37.72+1.30 18.114+15.32 139.97+4.75 | 72.23+1.63
GAN 20.26+0.69 10.99+7.39 67.32£2.75 36.14+1.07
40.27+1.25  20.784+14.83 145.50+5.04 75.79+£1.96
GAN 20.21+0.49 10.51+£7.12 67.04+2.41 | 36.01+0.75
¢ 40.31£0.92  19.55+14.23 144.50+4.61 | 75.46+1.55
VAE 20.92+1.25 10.83+7.00 68.22£3.58 36.87£1.67
41.49+2.32 20.81£13.94 147.00£6.32 77.09+3.08
VAE 20.094+0.77  10.41+£7.28 67.80+3.36 | 36.19+1.45
¢ 39.90+1.44 18.72+13.86 145.13+6.64 | 75.40+2.81
MoD 19.8840.46 9.95+11.05 64.35+2.02 34.60+0.62
o 40.02£1.07 20.61£23.07 142.51+4.40 74.03£1.50
MoD 19.69+0.46 8.731+9.56 63.60+2.02 | 34.21+0.73
evio 39.64+1.14 18.484+20.16 141.01+4.24 | 73.254+1.60

in the imbalanced dataset SDD, MoD-based methods consistently outperform
deep generative methods across all train set ratios. These results underscore
the preference for MoD-based methods for multiple outputs in imbalanced
datasets.

4.5.3 Qualitative Results

We provide qualitative trajectory prediction results for each multiple-output
approach in Fig. 4.12 and for each single-output method in Fig. 4.13 for
the SDD and THOR-MAGNI datasets, respectively. For both datasets, con-
ditioned methods are more accurate than their unconditional counterparts.
On the SDD dataset, which is characterized by imbalanced classes, cMoD is
the most effective compared to deep learning methods. On the THOR-MAGNI
dataset, we observed that conditioned deep learning methods outperform both
unconditional deep learning methods and the MoD approaches, which is con-
sistent with the quantitative results.



74 CHAPTER 4. PREDICTION WITH OBSERVABLE CLASSES
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Figure 4.6: Comparison of motion patterns of Carrier—Box and Visitors—
Group in THOR-MAGNI, Scenario 2. Class-conditioned CLiFF-maps (top
row) show that Carrier—Box has a more distinct and structured motion pat-
tern compared to Visitors—Group. The KL divergence heatmap (middle row)
quantifies the difference between the class-conditioned CLiFF-map and the
general one. Visitors—Group shows less divergence from the general motion
patterns and lower motion intensity (bottom row), resulting in a less pro-
nounced improvement in prediction accuracy from using class labels.

4.5.4 Pitfalls of Observable Classes

Observable classes can provide valuable contextual information for trajectory
prediction. However, they also introduce several challenges related to ambi-
guity, semantic inconsistency, and intra-class variability. For example, in the
SDD, the observable classes do not always distinguish the underlying dynam-
ics of the agents. A parked car labeled as a Car may exhibit a stationary
trajectory pattern that closely resembles that of a Pedestrian or other static
agents. Although the THOR-MAGNTI dataset provides more precise class la-
bels tailored to agent roles and activities, it is still susceptible to semantic
ambiguity. For instance, the Carrier—Boz class may encompass diverse trajec-
tory patterns, including walking with a box, picking up the box (stationary
behavior), or navigating without carrying an object. Such intra-class variabil-
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ity can devalue the intended semantics of the class, ultimately diminishing the
predictive capacity of class-conditioned prediction models. As a result, using
these class labels directly in prediction models can lead to misrepresentations
of agent dynamics.

To quantitatively analyze this problem, we conduct a Latent Semantic
Analysis (LSA) of trajectory data to explore the relationship between track-
lets and observable classes in our THOR-MAGNI dataset. Analogous to LSA
in Natural Language Processing [46], our analysis constructs an occurrence
matrix O capturing the frequency of trajectory cluster membership across ob-
servable classes. Each column in O corresponds to an observable class, and each
row represents a cluster obtained from the trajectory data. Specifically, we ex-
tract trajectory features using Singular Value Decomposition (SVD), followed
by clustering in the reduced feature space using the K-means algorithm [66].
SVD was also used in [4] to extract general motion patterns from trajectory
data and enhance trajectory representation for the prediction task. The num-
ber of clusters is selected based on the Davies-Bouldin Index (DBI), as defined
in Eq. (1.5).

In this analysis, “ C” abbreviates Carrier, e.g., C-LOF abbreviates Carrier-
Large Object Follower and C-LOL abbreviates Carrier-Large Object Leader;
“V” abbreviates Visitors, e.g., V-A abbreviates Visitors-Alone and V-G2 ab-
breviates Visitors-Group 2. The resulting matrix highlights clusters that dom-
inate within each class. We consider a cluster as representative of a class if it
accounts for at least 20% of the class’s samples. These are shaded in gray in
Tab. 4.4. For example, cluster #5 is a representative for both C-LOF, C-LOL,
and V-A, showing overlap in the underlying trajectory dynamics of these roles.
Similarly, cluster #1 is shared between C-Box and V-G2, while cluster #3 is
representative of C-Bucket, V-A, and V-G3. Tab. 4.4 and Figs. 4.14 and 4.15
visualize this phenomenon, illustrating that observable classes often map onto
overlapping regions of the trajectory feature space.

In Fig. 4.14, we present the centroids of the most representative clusters for
each of the carrier classes. The centroids for C-Bozx and C-Bucket differ sub-
stantially, reflecting the distinct motion associated with object transportation.
However, C-LOF and C-LOL share a common centroid (a shorter trajectory)
likely due to the stop-and-go dynamics of collaboratively transporting a large
object. Similarly, Fig. 4.15 shows the centroids of the most representative clus-
ters for the visitor roles. These centroids can be seen across different observable
classes, further highlighting the limitations of using high-level semantic roles
as cues to represent distinct motion behaviors.

Shared trajectory clusters across multiple observable classes highlight an
important limitation: semantic class labels do not always align with trajec-
tory dynamics. Conditioning trajectory prediction models on such ambiguous
classes may degrade performance (e.g., Visitors-Group in the THOR-MAGNI
dataset), particularly in scenarios where accurate behavioral modeling is crit-
ical.
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Table 4.4: Cluster-observed class occurrence matrix in MAGNI-S2. Gray back-
ground color means a sample proportion greater than or equal to 20% out of
all samples from each class.

Cl‘ilcslter C-Box C-Bucket C-LOF C-LOL V-A V-G2 V-G3 Total
1| 62 3 25 29 73 |43 8 243

2 | 6 1 14 13 53 33 3 123

3 | 35 91 22 31 87 30 21 317

4 | 37 34 30 60 36 17 291

5 ] 20 21 73 59 106 37 11 327

6 | 2 54 13 16 AT 19 7 158
Total | 202 207 181 178 426 198 67 1459

One promising strategy to mitigate this issue is to augment the input state
of the predictor using fine-grained representations, such as frame-based action
labels. These provide temporally localized behavioral cues that may resolve
ambiguity and enhance the predictive capacity of class-conditioned models.
We explore this approach in detail in Chapter 5.

4.6 Conclusions and Outlook

In this chapter, we empirically demonstrate that integrating observable classes
enhances the performance of trajectory prediction methods across diverse data
settings. Specifically, we analyze how prior art in deep learning-based and
pattern-based prediction can be adapted to consider class labels. For the deep
learning methods, we modify models such as LSTM, Transformer-based single-
output models, GANs, and VAEs to create efficient class-conditioned variants.
Additionally, we evaluate the deep learning baseline against a pattern-based
prediction approach, which uses Maps of Dynamics (CLiIFF-LHMP) to encode
motion trajectory patterns.

Our findings show that class-conditioned methods outperform their uncon-
ditional counterparts across most scenarios. Fig. 4.16 highlights the key quan-
titative outcomes of this work: (1) MoD-based predictors outperform single-
output deep learning models in low-data regimes, regardless of class balance,
(2) MoD-based predictors also surpass multiple-output deep learning models
in imbalanced datasets, and (3) observable classes provide valuable cues for
improving prediction accuracy in most cases. The improvement provided by
observable classes stems from the fact that class conditioning reduces forecast
uncertainty by focusing on specific agent behaviors rather than generalizing
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across heterogeneous classes with complex and diverse motion trajectory pat-
terns.

Consequently, choosing the most appropriate method depends heavily on
the available data and the application requirements. For instance, in new en-
vironments with limited data or scenarios containing imbalanced class propor-
tions, like vulnerable road users in automated driving, pattern-based methods
offer advantages over deep learning models. Building on this work, Fig. 4.17
presents a model selection tree to guide model choice based on data character-
istics (e.g., class balance and data volume) and application requirements (e.g.,
single- versus multiple-output predictions).

Despite the advantages, observable classes sometimes face two limitations:
they rely on human annotation, which is labor-intensive, and may lack preci-
sion if a single class encompasses diverse motion patterns that overlap with
other classes. For example, in the Stanford Drone Dataset (SDD), many cars
are parked, leading to static trajectories that resemble those of pedestrians
or stationary agents, which can impair model performance when using ob-
servable classes. Additionally, in the THOR-MAGNI dataset, the Carrier-Box
class may include various trajectory patterns, such as walking with a box, pick-
ing up the box (stationary behavior), or navigating without carrying an object,
which overlaps with the Visitors-Group 2 motion patterns. To address this lack
of precision, we explore finer labels that we refer to as frame-based actions,
which can better describe the agent’s trajectory in Chapter 5. In addition,
we also study unsupervised trajectory and dynamics clustering to create more
natural and informative class definitions. This approach seeks to improve the
utility of class representations by identifying more meaningful and unambigu-
ous trajectory groups, which can enhance model predictive performance. This
next step requires learning unsupervised, data-driven trajectory classes and
integrating them into the prediction task, a challenge we address in Chapter 6
and Chapter 7, respectively.
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Figure 4.7: Motion patterns of Carrier—Bucket in THOR-MAGNI, Scenario 2.
Class-conditioned CLiFF-maps (top row) show that Carrier—Bucket has dis-
tinct and structured motion patterns. The KL divergence heatmap (middle
row) quantifies the difference between the class-conditioned CLiFF-map and
the general one. It also shows a clear divergence from the general motion
patterns and higher motion intensity across specific paths (bottom row), re-
sulting in a pronounced improvement in prediction accuracy from using class

labels.
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Figure 4.8: General and class-conditioned CLiFF-maps in the DeathCircle
scene of the SDD. Left: all classes combined, middle: Bicyclist class, right:
Pedestrian class. Colored arrows depict the mean speed (length) and direction
(orientation) within the SWGMM of CLiFF-map, highlighting distinct motion
patterns for different classes.
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Figure 4.9: Top-1 ADE/FDE scores in THOR-MAGNI Scenario 2 (top row),
3A (middle row) and 3B (bottom row). In this class-balanced setting, deep
learning methods surpass MoD approaches for higher data regimes. However,
MoD methods (MoD and cMoD) outperform deep learning methods for low
data regimes and maintain stability even with reduced training data.
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Figure 4.10: Top-3 ADE/FDE scores across THOR-MAGNI Scenarios 2 (top
row), 3A (middle row), and 3B (bottom row). In the class-balanced THOR-

MAGNI, deep generative methods excel over MoD.
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Figure 4.11: Top-1 (top row) and Top-3 (bottom row) ADE/FDE scores
for SDD. In the imbalanced SDD, MoD methods outperform deep generative
methods across all data regimes.
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Figure 4.12: Prediction examples of Byciclist (left), Pedestrian (middle) and
Car (right) in SDD with 4.8 s prediction horizon.
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C-Box C-Bucket

Figure 4.14: Original translated trajectories overlaid with the corresponding
centroids of clusters representing more than 20% of the samples in MAGNI-S2
for each of the Carriers classes.

Figure 4.15: Original translated trajectories overlaid with the corresponding
centroids of clusters representing more than 20% of the samples in MAGNI-S2
for the Visitors classes.
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Figure 4.16: ADE of class-conditioned trajectory prediction methods across
balanced and imbalanced datasets. Top: In balanced datasets, at low data
regimes (10% train set ratio), the pattern-based method (cMoD) is more
accurate than deep learning methods (left). In imbalanced datasets, cMoD
is more accurate than deep generative models (right). Bottom: Class-
conditioned methods (c***) consistently outperform their unconditional coun-
terparts across both datasets.
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suitability.



Chapter 5

THOR-MAGNI Act:
Fine-grained Human Actions
in THOR-MAGNI

Action is the foundational key to all success.
— Pablo Picasso

As demonstrated in the previous chapter, static observable classes pro-
vide powerful cues to enhance trajectory prediction. However, they sometimes
lack precision in accurately representing the state of the agent acting in a
context-rich, unconstrained environment, as a single class can encompass di-
verse behaviors. Also, those diverse behaviors can be shared between different
classes (see Sec. 4.5.4). In order to resolve this ambiguity, we extend the state
representation to consider fine-grained representations of agent states. This
chapter introduces THOR-MAGNI Act, an extension of the THOR-MAGNI
dataset, providing 8.3 hours of manually labeled participant actions derived
from egocentric videos recorded via eye-tracking glasses. These actions, aligned
with the provided THOR-MAGNI motion cues, enrich the input state repre-
sentation of a predictive system capable of anticipating human actions and
trajectories in complex environments. We demonstrate the utility of THOR-
MAGNI Act for two tasks: action-conditioned trajectory prediction (A-TP)
and joint action and trajectory prediction (TAP). To that end, we extend the
Transformer-based model outlined in Chapter 4 to address these tasks. Our
findings highlight the potential of THOR-MAGNI Act as a valuable resource
for developing advanced predictive models, facilitating improved human-robot
interaction in complex, industrial-like environments. In addition, our action-
conditioned trajectory prediction model outperforms the baselines across var-
ious input settings, demonstrating the effectiveness and generalizability of our
predictive and meaningfulness of the corresponding action labels. Finally, our

87
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multi-task learning model achieves strong performance in both trajectory and
action prediction tasks, outperforming the baselines in trajectory prediction,
matching single-task models in action prediction, and being more memory and
energy-efficient.

5.1 Introduction

5.1.1 Motivation and Contributions

Until now, we have been focusing on observable classes that may affect the
trajectory patterns of the dynamic agents in the scene. While these high-level
attributes, such as roles or activities, effectively describe the overall behavior
of an agent, they assign a uniform characterization to all trajectories at every
time step associated with that agent. This uniform labeling introduces ambi-
guity, particularly in structured yet complex industrial environments, where
robots interact with humans performing intricate tasks [9]. For example, in
the THOR-MAGNI dataset, described in Chapter 3, participants are assigned
static roles representing their ongoing industrial activities (e.g., transporting
objects; see Sec. 3.2.2). However, these high-level roles do not capture fine-
grained sub-tasks such as walking, picking up an object, transporting it, or
delivering it. As a result, conditioning trajectory predictors solely on static
roles underperforms in scenarios requiring a more informed understanding of
human motion. Moreover, datasets providing accurate, fine-grained labels for
human motion and activities in industrial environments are scarce. Most ex-
isting datasets focus on social navigation in public spaces, where dominant
behaviors include walking and standing [69, 30, 34, 78|. Therefore, human
motion trajectory datasets with finer contextual information on the activities
performed by the agents are needed.

To overcome these limitations, we present THOR-MAGNI Act, an exten-
sion of the original dataset, which provides 8.3 hours of fine-grained actions
derived from the first-person view videos of participants wearing eye-tracking
glasses. Our THOR-MAGNI Act is unique in aligning action labels with high-
quality multi-modal first-person gaze and third-person motion capture data,
as shown in Fig. 5.1. These labels enable the robot to anticipate not only long-
term human motion trajectories but also actions, which is important to ensure
more effective and informed human-robot interaction and cooperation.

To demonstrate the utility of THOR-MAGNI Act, we present two predic-
tion frameworks: (1) observable class- and action-conditioned trajectory pre-
diction, extending the Transformer-based models described in Sec. 4.3, and
(2) joint prediction of future trajectory and corresponding actions via multi-
task learning [104]. Our results show that incorporating action labels improves
the performance of these predictive models. THOR-MAGNI Act and the corre-
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Figure 5.1: Action annotations for a 4-minute recording of a person carry-
ing storage bins while interacting with a mobile robot, synchronized with
the motion capture data. Inset images display snapshots from gaze overlaid
videos, featuring visualizations of head orientation vector (red) and gaze vec-
tor (green). The length of the arrows on the map denotes the velocity mag-
nitude.

sponding scripts are stored in a publicly accessible repository'. Documentation
on how to use and visualize the dataset can be found in the same repository.

5.1.2 Outline

In Sec. 5.2, we describe the actions in the THOR-MAGNI Act dataset and
present statistical insights on the provided data. In Sec. 5.3, we formalize
two tasks enabled by our dataset: action-conditioned trajectory prediction (A-
TP) and multi-task learning for simultaneous trajectory and action prediction
(TAP). In the same section, we also introduce the corresponding prediction
methods. In Sec. 5.4, we describe the experimental setups for evaluating our
methods, highlighting the target scenarios and the evaluation setup. Sec. 5.5
presents quantitative and qualitative results for trajectory and action predic-
tion. Finally, in Sec. 5.6, we summarize the dataset’s key findings and contri-
butions.

Ihttps://github.com/tnralmeida/thor-magni-actions
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Table 5.1: Amount of eye-tracking and trajectory data recorded per human
role or observable class.

Observable Class Eye-tracking (min.) | Trajectory data (min.)

|

Visitors—Alone ‘ 108 ‘ 392
Visitors—Group 2 ‘ 124 ‘ 344
Visitors—Group 3 ‘ 52 ‘ 168
Visitors—Alone HRI ‘ 64 ‘ 112
Carrier—Bucket ‘ 32 ‘ 96
Carrier-Box ‘ 60 ‘ 96
Carrier—Large Object ‘ 92 ‘ 192
Carrier—Storage Bin HRI ‘ 16 ‘ 16
Total \ 548 \ 1416

5.2 THOR-MAGNI Act Dataset

The observable classes in THOR-MAGNTI represent high-level roles assigned to
participants for the duration of a 4-minute recording session, such as: Carrier—
Bozx, Carrier—Bucket, Carrier—Large Object, Visitors—Alone, Visitors—Group,
and Visitors—Alone HRI (see Sec. 3.2.2). During each session, one to three par-
ticipants wore eye-tracking glasses to capture egocentric video data, providing
a first-person perspective of their actions and movements. Tab. 5.1 presents a
detailed summary of the amount of eye-tracking data recorded for each observ-
able class in the original THOR-MAGNI dataset. THOR-MAGNI Act builds
upon this foundation by introducing manually annotated action labels derived
from the recorded egocentric videos. These fine-grained action annotations of-
fer a more detailed description of human behavior within the high-level roles
already defined in THOR-MAGNI. In this section, we describe the action an-
notation process in detail and provide statistical insights into the dataset,
highlighting the alignment between trajectory data and the newly introduced
action labels.

5.2.1 Action Annotations

We annotated actions in the entire THOR-MAGNI dataset using the 8.3 hours
of egocentric videos (see Tab. 5.1) and the “Event Marker” feature in the eye-
tracking software [92]. We placed Event markers at the initial fixations indi-
cating action transitions, such as reaching for objects or bending to deliver
items. In ambiguous transitions, where hand visibility was insufficient, we se-
lected subsequent fixations within the ongoing activity as reference points.
Additional data from the eye tracker, such as IMU readings and audio cues,
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were used to improve the precision of annotations in these ambiguous cases.
This annotation process was manually curated to ensure high-quality labels.
From the annotation process, we define a set A of 14 unique action la-
bels that provide a detailed representation of participant activities within the
dataset. These actions are aligned with existing observable classes in THOR-
MAGNTI and capture various stages of goal-oriented tasks and interactions:

o Walk: Walking between designated goal points.
e DrawCard: Drawing a card at a goal point.

o ObserveCardDraw: Observing another participant drawing a card at a
goal point.

o WalkLO: Transporting a large object.

e PickBucket: Picking up a bucket.

o WalkBucket: Transporting a bucket between goal points.

e DeliverBucket: Dropping a bucket at a goal point.

e PickBoz: Picking up a box at a goal point.

o WalkBoz: Transporting a box between goal points.

e DeliverBox: Delivering a box at a goal point.

o PickStorageBin: Picking up a storage bin.

o WalkStorageBin: Transporting a storage bin between goal points.
e DeliverStorageBin: Dropping a storage bin at a goal point.
e HRI: Interacting with the mobile robot.

Each observable class is associated with specific actions, while some actions
are shared across different classes (see Fig. 5.2 for an overview). An observable
class is constant in all trajectories of a particular agent, whereas an action
may change at every time step. Consequently, this data extension provides
finer labeling of internal factors (e.g., goal-driven actions) that can influence
human motion. In particular, the actions Walk and DrawCard are shared across
multiple observable classes, indicating that trajectories involving these actions
are likely to have similar characteristics, even when performed by agents of
different observable classes.
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Figure 5.2: Top: Observable class-actions mapping. Grey boxes denote actions,
and colored boxes represent the observable classes. Bottom: Distribution of
actions in log-scale sorted by descending order, with colors indicating observ-
able classes.

5.2.2 Dataset Statistics

We computed the THOR-MAGNI Act statistics for non-overlapping 8-second
trajectory segments, in line with common trajectory prediction benchmarks [52]
and the analysis conducted in Sec. 3.4 for the THOR-MAGNI dataset. Fig. 5.2
bottom presents the distribution of actions in log-scale, along with their rep-
resentation across different observable classes. Although the dataset’s actions
follow a long-tailed distribution, it includes novel action labels specific to hu-
man tasks and mobile robot interactions, setting it apart from existing social
navigation datasets. Along with motion cues and gaze vectors, these labels
support research on egocentric action prediction models from visual input and
gaze pattern analysis.

Fig. 5.3 presents the average and standard deviation of acceleration, ve-
locity, and navigation distance of motion in each action class, along with the
corresponding global metrics (aggregated across all 8-second segments). For
acceleration, static actions such as picking up or delivering an object result
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Figure 5.3: Top: 2D acceleration (mean 4 one standard deviation), where
values near zero indicate constant velocity. Middle: 2D velocity (mean =+
one standard deviation), where values near zero correspond to static actions.
Bottom: navigation distance (mean + one standard deviation), where values
near zero indicate static actions and higher values reflect walking actions.

in small negative accelerations, while walking actions generally show constant
velocities or small positive accelerations. Consequently, in terms of velocity,
static actions fall below the global average, whereas actions like WalkBox and
WalkBucket involve higher velocities compared to WalkLO or WalkStorageBin,
where participants transport a large object in groups of two and move along-
side the robot, respectively. Finally, distance correlates with the acceleration
and velocity trends, highlighting distinct actions and further demonstrating
the diversity and complexity of our dataset.



94 CHAPTER 5. FINE-GRAINED HUMAN ACTIONS

5.3 Trajectory and Action Prediction

In this section, we introduce two examples of tasks this dataset can be used
for: action-conditioned trajectory prediction (A-TP) and multi-task learning for
joint trajectory and action prediction (TAP), along with the respective pro-
posed models. The observed horizon (O) spans 3.2s (8 time steps), while the
prediction horizon (L) extends to 4.8 s (12 time steps). The observed tracklets
are denoted as S = (st)tozl, where the states s; comprise 2D positions, veloci-
ties, and the corresponding action a, represented as s; = (x,y, Z,y, a). The fu-
ture of an observed tracklet Y consists of 2D velocities, Ys = (2, 9:)) 0 41
of length L = 12, which are subsequently converted into future positions Psg.
The future sequence of actions temporally aligned with Yg is denoted by
ag = (at)tT£o+1v a; € A.

5.3.1 Action-conditioned Trajectory Prediction

The goal is to predict the future of a tracklet conditioned on the observed
actions (part of the input state) and observable class, ¥)a_1p: (Sk,Cr) — Ys,,
where Ysg, is the future corresponding to the observed tracklet Sy. The training
data for this task, {(Sg,Ck,Ps, )}k, consists of triplets of observed tracklets
including actions, ground truth observable class labels, and ground truth future
positions.

The ©¥a_Tp model has an encoder-decoder structure as in [52, 27] and
Chapter 4. The encoder Enc, a Transformer-based encoder [93], processes the
result of an embedding mapping (a single-hidden layer multilayer perceptron
or MLP). The encoded features are then concatenated with the observable
class embeddings and processed through the decoder network Dect (a two-
hidden layer MLP) to generate the future sequence of velocities, Ygs. Fig. 5.4,
excluding the yellow branch, depicts the graphical representation of s _Tp.
The blue dotted arrow in the figure indicates the baseline model, which op-
erates without observable class conditioning or actions in S. We train s _1p
with the MSE loss given by Eq. (4.4).

5.3.2 Trajectory and Action Prediction

The goal is to predict the future of a tracklet and the corresponding actions,
Yrap: (Sk,Cr) — (Ys,,as,), where Yg, is the future tracklet and ag, the
future sequence of actions corresponding to the observed tracklet Sj. The
training data for this task, {(Sk, Ck, Ps,,as, )}, consists of quadruples of ob-
served tracklets including actions, ground truth observable class labels, ground
truth future positions, and the sequence of actions.

The ¥rap model is similar to the previously described 14 _Tp model (see
Sec. 5.3.1). The key difference is the additional decoder, Decy, which shares the
same network configuration as Dect. This decoder generates probabilities for



5.4. EXPERIMENTS 95
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S —> (Enc)

Figure 5.4: Action-conditioned models and multi-task learning methods (ad-
ditional yellow branch). Dashed arrows indicate methods using observable
class, while dotted arrows represent baseline models where S excludes actions
in the trajectory prediction task.

the sequence of actions at each future time step, denoted as Ag”*™4 where
Na = |A|. The final sequence of actions ag is determined by applying the
argmax operator to these probabilities. Fig. 5.4, including the yellow branch,
depicts the graphical representation of 11ap, whose baseline consists of two
models tailored to each task. We train ¢rap using a weighted loss function
that combines trajectory prediction (as defined in Eq. (4.4)) and sequence of
actions prediction, as follows:

Lrap(Ps, Ps, as, as) = Luse(Ps, Ps) + A4 (as, as), (5.1)

where \ is a weighting factor that balances the contribution of the action
prediction term, L4, relative to the trajectory prediction term, Lysg. The
action prediction loss, L, , is defined as the cross-entropy loss:

Tp Na

La(as, as) = —% STS o, log(ad,), (5.2)

j=0+1m=1

where @/, is the predicted probability for class m at time step j, and a?,
is a binary indicator of the ground truth for class m at time step j. In our
experiments, we tested \ = 1.

5.4 Experiments

5.4.1 Target Scenarios

For our analysis, we merged Scenarios 1 (humans navigating freely), 2 (hu-
man task-oriented roles and static robot), and 3 (human task-oriented roles
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and moving robot) data from THOR-MAGNI, as these scenarios encompass
a more diverse set of observable classes and, consequently, a broader vo-
cabulary of action classes. These scenarios comprise a total of 5 observable
classes: Carrier—Box, Carrier—Bucket, Carrier—Large Object, Visitors—Alone,
and Visitors—Group. In addition, they include 10 action classes: DrawCard,
Walk, WalkLO, PickBucket, WalkBucket, DeliverBucket, ObserveCardDraw,
PickBox, WalkBox, and DeliverBoz. In total, the dataset contains 1909 tra-
jectories of 8 seconds.

5.4.2 Evaluation Setup

To evaluate the proposed models, we employ 5-fold cross-validation. In the pre-
diction results, we use Top-1 ADE and FDE in meters, as defined in Egs. (1.1)
and (1.2). In the action prediction results, we also show the accuracy (ACC)
and F1 score (F1), as defined in Eqs. (1.3) and (1.4). We compute all met-
rics’ mean and standard deviation across the validation folds to ensure robust
evaluation.

5.5 Results

5.5.1 Quantitative Results

Tab. 5.2 shows the results for the A-TP task with various cue settings. The
results show that incorporating action information (fourth row) improves the
prediction accuracy compared to the baseline model (first row), with further
gains when combined with observable class information (last row). To evalu-
ate the generalizability of these cues, we also report results using translated
and rotated input trajectories aligned with the x-axis, shown in the fifth col-
umn. This transformation removes environment-specific dependencies, yielding
a more generalizable input representation (see Sec. 1.2.1). Such layout-agnostic
settings are particularly relevant in real-world applications, where robots op-
erate in unseen environments or cold-start scenarios as discussed in Chap-
ter 4. Importantly, even under this more generalizable configuration, action
conditioning outperforms other methods, and the performance gap becomes
more pronounced compared to models using raw positions (fourth column). In
fact, action cues prove more informative in layout-independent conditions than
high-level observable classes, achieving superior prediction accuracy. These
findings suggest that fine-grained action annotations offer robust contextual
signals that enhance the representation of context-agnostic input states. These
results demonstrate that actions serve as valuable contextual cues, compris-
ing fine-grained events and enhancing the trajectory prediction process with
additional, informative descriptions of current activities.

Tab. 5.3 shows the results on the TAP task. We show the best baseline for
action prediction where s; = (z,y, &,9,a). The results show that observed ac-
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Table 5.2: Action-conditioned trajectory prediction results for raw positions in
the input state, with bold values indicating superior performance of our agent
and action class-aware models compared to the baseline.

Model Agent Actions ADE ADE* Number
Class Class FDE FDE* Parameters (K)
BASFLINE Vrsoos | tassoos | %7
/ Vaosoor | tsisoor | O
OURS /| Vsteoor | vrsoos |
/4 | Vanior tmisows| B

* Results with translated and rotated positions.

Table 5.3: Comparative multi-task learning results, with bold values showing
superior performance.

Model Agent | Actions ADE ACC Number
Class Class FDE F1 Parameters (K)
0.714+0.03 | 0.85+0.01 on
BASELINES 1.3740.05 | 0.85+0.01 36.7+42.6
0.68+0.04 | 0.62+0.02 .
v 1.29+0.08 | 0.61+£0.02 46.3
0.70£0.03 0.83+0.01 o
v 1.334+0.07 0.83+0.01 433
OURS
0.70+0.04 | 0.85+0.01
v v 1.324+0.08 | 0.85+0.01 468

tion sequences are crucial for strong performance in action prediction (second
row versus third and fourth rows). Our best approach can perform strongly
in trajectory and action prediction simultaneously, outperforming baselines
in trajectory prediction and matching single-task models in action predic-
tion (last row). Also, our method (46.8K) is more efficient than the baselines
(36.7K+42.6K). In summary, these results highlight that THOR-MAGNT Act
enables the development of novel predictive systems capable of performing
multi-task predictions for both trajectories and actions. Furthermore, the pro-
posed method is an effective and efficient foundational prototype for such sys-
tems.
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Figure 5.5: Prediction examples for Carrier-Boz in Scenario 3, for our multi-
task learning framework (“MTL-OURS”, left) for joint trajectory and action
prediction, and our action-conditioned trajectory prediction model (“ACT-
OURS”, right), with a 4.8 s prediction horizon.

5.5.2 Qualitative Results

Fig. 5.5 illustrates scenarios where incorporating actions improves prediction
accuracy. For instance, in the case of the “picking up a box” behavior, the multi-
task learning approach (MTL) reduces the ADE/FDE errors from 0.69/1.00
to 0.23/0.11, with only a single future action misprediction. Similarly, action-
conditioned predictions leverage observed action sequences to reduce trajectory
errors for the “dropping a box” behavior. These examples highlight cases where
fine-grained actions change throughout the trajectory. In such scenarios, either
incorporating observed actions or accurately predicting future actions provides
informative and meaningful contextual information, leading to substantial im-
provements in trajectory prediction accuracy.

5.6 Conclusions and Outlook

The interplay between complex activities, actions, and locomotion dynamics of
people and other agents still needs to be explored, particularly in industrial sce-
narios. This research gap can be addressed with comprehensive datasets that
capture the relationship between actions and motion trajectories. Our work
introduces the THOR-MAGNI Act dataset to align action labels with diverse
human trajectory cues. These cues, including position data, head orientation,
gaze, and semantic attributes, provide a rich description of human motion
in industrial settings. In this work, we also developed efficient and accurate
models for two key applications enabled by THOR-MAGNI Act: (1) action-
conditioned trajectory prediction (A-TP) and (2) joint action and trajectory
prediction (TAP). We have shown that the proposed models can leverage the
rich contextual information the dataset provides to improve prediction accu-
racy in both A-TP and TAP tasks. The results demonstrate that augmenting
the input state representation with action labels can substantially enhance the
performance of trajectory prediction models, even in layout-agnostic scenarios.
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In addition, the proposed multi-task learning framework can effectively learn
to predict both future trajectories and actions simultaneously, achieving bet-
ter performance in the trajectory prediction task and competitive performance
in the action prediction task than single-task baselines. THOR-MAGNI Act
with the diverse annotation classes pave the way for future research in human
trajectory modeling based on rich contextual cues. However, from a practical
perspective, these contextual cues often depend on external perception algo-
rithms, which can introduce errors and negatively impact prediction accuracy.
To address this limitation, data-driven trajectory classes offer a robust al-
ternative by providing representations derived directly from motion patterns,
independent of class or action detection errors. This approach is introduced in
Chapter 6, where we propose methods for learning such classes. Subsequently,
in Chapter 7, we integrate the learned representations into prediction frame-
works to improve forecasting performance.






Chapter 6

Learning Data-driven Classes

(...) he thought about the impermanence of life, the transience of things, the
ephemerality of being; before him, existence flowed like a breath, always changing,
everything changing at every moment and nothing ever being the same again.

— José Rodrigues dos Santos, O Sétimo Selo

Although observable classes are valuable cues for trajectory prediction,
they face two limitations. First, human-defined semantic labels (e.g., Carrier-
Boz and Carrier-Bucket in Chapter 4) may not always align consistently with
actual motion patterns. This misalignment arises from the static nature of
observable classes, which assign a single label to all trajectories of a given agent,
potentially encompassing diverse and ambiguous motion behaviors. Second,
even when actions enhance semantic granularity (Chapter 5), both observable
classes and actions ultimately depend on external perception stacks. Errors
in sensor data or downstream detection pipelines can propagate through the
system and impair trajectory prediction performance.

This chapter explores an alternative approach based on learning data-
driven trajectory classes to address these challenges. These classes are formed
by clustering trajectory data directly, bypassing predefined semantic labels,
and grouping trajectories based on shared patterns instead. The intuition is
that data-driven classes enhance class representation and, consequently, down-
stream trajectory predictions.

Data-driven classes for the prediction task should capture the underlying
structure of motion patterns, including future intent and latent semantics.
A natural alternative to observable classes is to cluster trajectories based on
their observed states, intuitively assuming that similar observed sequences will
continue with similar future movements. However, observed states alone do not
provide sufficient information to capture future intent, as they only reflect past
motion. An alternative is to cluster the future or entire sequence of trajectory
states, which can hold important patterns for the prediction task. Therefore, a
key question we address in this chapter is whether clustering based on future

101
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or full trajectory states yields more informative classes than those based solely
on observed states.

To study the impact of data-driven classes on trajectory prediction, we
conduct a performance analysis. We define predictive models conditioned on
clusters derived from trajectory states based on traditional clustering tech-
niques, such as K-means. We show that only clusters including future in-
formation enhance trajectory prediction compared to clusters based on ob-
served trajectory states. While impractical at inference time as they depend
on future information, these models are theoretical baselines indicating the
informative content of trajectory patterns. We also explore alternative input
representations (i.e., displacement vectors, normalized trajectories, statistical
descriptors) that impact cluster formation. Specifically, we find that statistical
descriptors outperform the other representations in final displacement error.
From the clustering algorithm perspective, K-means applies the Euclidean dis-
tance in flattened inputs, disregarding sequential patterns that are similar in
dynamics but misaligned in time. Thus, novel clustering methods are required
to study, as traditional classical approaches present limitations.

An alternative to K-means is Time-Series K-Means, which uses time-series
distance metrics to capture misaligned temporal patterns. Although theoret-
ically better suited for time-series, Time-Series K-Means is inefficient due to
the use of the Dynamic Time Warping distance. To overcome these limita-
tions, we present a method for finding data-driven trajectory classes based on
a deep generative framework. We propose Self-Conditioned GAN, a multi-task
learning framework that simultaneously learns to cluster trajectories in a deep
feature space and generate realistic trajectory samples. We benchmark our ap-
proach against K-means and Time-Series K-Means and assess the quality and
utility of the resulting clusters. As a result, we show that our Self-Conditioned
GAN captures more generalizable clusters by outperforming traditional clus-
tering techniques in data distribution drift settings.

6.1 Introduction

6.1.1 Motivation and Contributions

Observable classes, while effective in many settings, are static: a fixed class
is assigned to each agent’s trajectories regardless of the possible diversity of
motion trajectory patterns. As a result, these classes may fail to distinguish
between distinct motion patterns that occur across different contexts. More-
over, similar trajectories from different agents may be grouped under sepa-
rate observable classes, leading to incoherent or ambiguous representations
(Sec. 4.5.4). Although extending the input with actions can alleviate some
of this ambiguity, actions still rely on perceptual pipelines that may produce
inaccurate estimations.
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To overcome these challenges, this chapter proposes a shift from predefined
observable classes to data-driven classes, i.e., groupings derived directly from
trajectory data. Contrary to observable classes, data-driven classes (1) are not
defined by human labels but rather emerge from the data itself, capturing
the underlying structure and dynamics of the trajectories; (2) can also be
more robust to noise and errors in the input data, as they are based on the
actual motion patterns rather than relying on potentially flawed observable
class or action detections; (3) operate at a finer level of granularity by clustering
trajectories rather than grouping agents’ trajectories according to the agent
type, role, or activity.

In this thesis, we define data-driven classes as clusters of trajectories with
similar spatio-temporal characteristics obtained through unsupervised learning
techniques that focus uniquely on the intrinsic structure of motion. However,
clustering sequential trajectory data is not trivial due to its high dimension-
ality, temporal dependencies, and non-linear structure. Traditional clustering
methods, such as K-means [66], require reshaping datasets of multidimensional
time-series into 2D matrices, where, in our case, each row represents a trajec-
tory, and the columns correspond to the flattened time-series representation.
K-means uses the Euclidean distance in this flattened space, which fails to
account for temporal misalignments of trajectory patterns. Time-Series K-
Means (TS K-means) [91] partially addresses this issue by using time-series
distance metrics such as Dynamic Time Warping (DTW), but its high com-
putational cost limits its applicability in large-scale or real-time scenarios.
These limitations highlight the need for advanced, unsupervised methods that
automatically detect trajectory classes while integrating seamlessly into tra-
jectory prediction frameworks. Such unsupervised methods should leverage the
complexity and richness of the input data through an effective input represen-
tation to enhance prediction accuracy without compromising computational
efficiency.

The choice of input features influences the clustering process, as differ-
ent representations capture different characteristics of the data and thus yield
distinct clustering outcomes. In this chapter, we evaluate three types of in-
put representations, each motivated by its ability to encode specific motion
properties: (1) displacement vectors, which capture short-term velocity and
directionality and are expected to group trajectories based on local kinematic
behaviors, (2) normalized trajectories, which abstract away from spatial con-
text and enable grouping similar trajectories independent of orientation, use-
ful in environment-invariant prediction settings, and (3) statistical features,
which provide a compact matrix-based summary of a trajectory using descrip-
tors such as mean velocity, path efficiency, and turning behavior, effectively
aggregating several motion aspects into a single feature space. Beyond fea-
ture representations, the trajectory segment used for clustering also affects
the informativeness and applicability of the resulting clusters for downstream
tasks like prediction. We investigate three strategies for cluster derivation: (1)
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observation-driven clustering, which uses only the observed segment of the tra-
jectory and is naturally deployable within prediction tasks, as the observation
can be directly mapped to the corresponding cluster class at inference time
(similar to observable classes), (2) future-driven clustering, which explores the
future portion of the trajectory to uncover modes of future behavior, and (3)
full-driven clustering, which uses the complete trajectory to capture both past
and future motion patterns, potentially improving the correspondence between
observed segments and cluster assignments by accounting for their full tem-
poral context. In this chapter, we comprehensively study the combination of
different input features and the three segments of the trajectory (i.e., observa-
tion, future, full), allowing us to explore how the nature and timing of input
data influence the formation of trajectory classes and their effectiveness when
integrated into prediction frameworks. Our experiments show that only future-
and full-driven clustering yield informative classes for the prediction task, as
these segments contain information about the unseen future. On the other
hand, observation-driven clusters overlap with the input that is already ac-
cessible to the predictor. Clusters derived from future information enable the
construction of models that represent theoretically achievable performances
under privileged future-driven cluster knowledge. Though impractical for de-
ployment, these predictors are analytically valuable for quantifying model lim-
itations and informing the design of other effective prediction systems. We
leverage the insights from the analysis of predictors conditioned on future tra-
jectory segments in Chapter 7 to develop practical predictors that benefit from
the structure uncovered by future- and full-driven trajectory classes.

To address current traditional clustering methods’ shortcomings, this chap-
ter proposes the Self-Conditioned GAN (SC GAN), a deep generative frame-
work that combines trajectory clustering and generation in a unified architec-
ture. SC GAN learns a 2D deep feature space in which trajectory embeddings
are clustered while simultaneously generating trajectory samples conditioned
on the discovered clusters. This multi-task setup ensures that the learned clus-
ters are predictive of future behavior and that the temporal structure of the
data is preserved throughout the learning process. We validate the effectiveness
of SC GAN by comparing it to a predictor conditioned on observable classes.
Our experiments demonstrate that SC GAN attains lower prediction errors,
highlighting the strength of SC GAN’s clusters derived from future motion.
We also benchmark SC GAN against traditional clustering techniques, such as
K-means and TS K-means, on both road users datasets (Argoverse [17]) and
human motion trajectory datasets (THOR. [83], ETH/UCY [60, 76]). While
all methods yield comparable results under standard conditions, SC GAN
substantially outperforms traditional approaches in data drift scenarios, where
training and testing trajectories follow different motion patterns. These results
suggest that SC GAN is more robust to underrepresented or diverse trajectory
behaviors.

In summary, the contributions of this chapter are as follows:
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e We introduce the concept of data-driven classes, which represent groups
of trajectories learned directly from trajectory data without relying on
predefined labels or perceptual pipelines.

e We analyze the impact of different input feature representations and
clustering strategies on the quality of the learned clusters, stressing the
importance of future- and full-driven clustering for the trajectory predic-
tion task and highlighting the differences between various input feature
representations.

e We propose the Self-Conditioned GAN (SC GAN), a deep generative
framework that simultaneously learns to cluster trajectories and gen-
erate realistic samples, preserving temporal dependencies. We evaluate
SC GAN against traditional clustering methods (K-means and TS K-
means) on various datasets, demonstrating its robustness and predictive
capabilities, especially in data distribution drift scenarios.

6.1.2 Outline

This chapter is organized as follows. Sec. 6.2 formalizes and describes the
process of clustering trajectory data. This section also details the different
settings for clustering trajectory data through various input feature represen-
tations and compares traditional methods with our proposed Self-Conditioned
GAN (SC GAN). Sec. 6.3 describes predictors conditioned on future trajec-
tory states and compares them to baseline models on synthetic and real-world
datasets. Sec. 6.4 introduces our SC GAN framework to cluster trajectory data
followed by experiments comparing SC GAN with other trajectory clustering
methods. Finally, Sec. 6.5 concludes this chapter with a description of the key
contributions and findings, outlining the introduction of data-driven classes in
trajectory prediction systems in Chapter 7.

6.2 Clustering Trajectory Data

The objective of trajectory clustering is to identify N, distinct classes from
a collection of trajectories, as illustrated in Fig. 6.1. Formally, the clustering
task is defined as:

(bClustering: Pk = Ck, Cp€ {17 LR 7NC}7 (61)

where P denotes the k-th trajectory and ¢ its assigned cluster label. These

clusters aim to capture consistent and distinctive patterns in trajectory be-

havior, which can support downstream tasks such as trajectory prediction.
We first transform raw trajectories into feature representations:

fext: Pk — fk7 (62)
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Figure 6.1: Trajectory clustering framework. From left to right: raw trajectory
data is transformed into a suitable feature representation, which is then clus-
tered into N, groups (in this example, N, = 5).

where fey; denotes the feature extraction function, and f; the resulting feature
vector for trajectory Pj. The feature extraction process is discussed in detail
in Sec. 6.2.1.

Subsequently, we apply clustering algorithms to the extracted features. We
consider standard clustering algorithms, such as K-means, which require a 2D
feature matrix. To accommodate sequential trajectory data, K-means requires
flattening time-series inputs, which often results in the loss of misaligned tem-
poral patterns. Time-Series K-Means mitigates this by preserving temporal
alignment using Dynamic Time Warping. However, the high computational
cost of DTW makes this approach unsuitable for large-scale or real-time ap-
plications.

To overcome the limitations of traditional clustering methods, we introduce
the Self-Conditioned GAN, a deep generative framework detailed in Sec. 6.4.

6.2.1 Input Feature Representations

The inputs of clustering algorithms, particularly the choice of features and
the segment of the trajectory from which they are extracted, are crucial in
determining the resulting clusters and the quality of the identified classes.
Clustering algorithms take as input a 2D matrix or a 3D tensor of trajectory-
derived features fj; as defined in Eq. (6.2). In what follows, we describe the
feature representations explored in this work for a trajectory of arbitrary length
H. For clarity, we omit the trajectory index k in the notation.

e Displacement vectors: As defined in Sec. 1.2.1, calculated as finite
differences of 2D positions, capturing local motion between successive
time steps. For a trajectory P = {(z¢,v:)}L,, the displacement vector
at time ¢ is given by:

dt = (l‘t — Tt—-1, yt_yt—l)a for t=2,...,H. (63)
The resulting trajectory is then flattened into a vector:

f=(dy,...,dyg) e RE*2 d; =(0,0). (6.4)
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Figure 6.2: Top rank-2 principal components in THOR-MAGNI Scenario 2
trajectory dataset: in the X (blue) and Y (red) axes.

Trajectory normalization: As defined in Sec. 1.2.1, each trajectory
is translated to the origin and rotated to align with the X-axis, thus
removing environment-specific spatial biases (illustrated in Fig. 1.6). The
normalized position pj°™ at time step t is computed as:

pl™ =R, - (p; —p1), fort=2,... H, (6.5)

where Ry is the 2D rotation matrix aligning the first displacement vector
with the X-axis. The resulting trajectory is then flattened into a vector:

f=(pio™,...,pE™) e RT*2 pio™ = (0,0). (6.6)

Statistical features: We compute summary statistics (minimum, max-
imum, mean, and standard deviation) over motion cues such as veloc-
ity, acceleration, heading, and path efficiency. To capture the dominant
modes of variation, we additionally apply Principal Component Analysis
(PCA) [75] to the aggregated features. Fig. 6.2 illustrates the first two
principal components, which capture the most significant modes of vari-
ation in the statistical features, providing insights into the underlying
motion patterns over time in the THOR-MAGNI dataset.

Besides the type of features, the segment of the trajectory from which
features are extracted plays a key role in trajectory prediction. Let H €
{O,L,Tp} denote the segment length, where O is the number of observed

steps,

L the number of future steps, and Tp the total trajectory length. We

consider three configurations:
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Figure 6.3: Cluster types derived from different segments of a trajectory. Each
panel shows three example trajectories with 5 observation and 4 prediction
time steps from the same cluster. Left: Observation-driven clusters (red cir-
cles). Center: Future-driven clusters (red crosses). Right: Full-driven clusters
combining both segments.

e Observation-driven clustering: Features are computed from the ob-
served segment only (Pj, € R*2 in Eq. (6.1)).

e Future-driven clustering: Features are computed from the future seg-
ment, unavailable at inference time (P € RL*2 in Eq. (6.1)).

e Full-driven clustering: Features are computed from the entire trajec-
tory, including both observation and future segments (P; € RT7*2 in

Eq. (6.1)).

Clusters derived from observed segments offer limited utility since they
do not provide additional information beyond what is already accessible to
the predictor. In contrast, future- and full-driven clusters contain privileged
information that can be leveraged during training to improve predictive perfor-
mance. These configurations are illustrated in Fig. 6.3 and their incorporation
in predictors in Fig. 6.4.

6.2.2 Traditional Clustering Methods versus SC GAN

Traditional clustering methods like K-means operate on fixed-length vectors
in a flat 2D feature space. To apply K-means to trajectory data, the trajectory
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dataset must be reshaped into a matrix where each row corresponds to a tra-
jectory, and each column represents a time-flattened feature dimension, such
as sequential 2D displacements. The Euclidean distance applied to the flat-
tened representation disregards temporal patterns misaligned with the time
axis. As a result, trajectories that are similar in shape but temporally mis-
aligned may be assigned to different clusters, leading to a loss of meaningful
sequential information. An alternative approach to clustering sequential data
involves extracting statistical descriptors from the trajectory, such as average
velocity, acceleration, or path efficiency. While these features offer compact,
low-dimensional representations, they may underrepresent non-linearities and
transient motion patterns, reducing their effectiveness in capturing fine-grained
trajectory dynamics.

Time-Series K-means (TS K-means) [91] mitigates the misalignment issue
by using time-series distance metrics such as Dynamic Time Warping (DTW)
to measure similarity between trajectories. DTW can capture misaligned sim-
ilarities in temporal sequences, making T'S K-means more suitable for time-
series data, such as human motion trajectories. Nonetheless, the computational
cost of DTW is substantially higher than that of standard Euclidean distance,
limiting the scalability of TS K-means in large datasets or real-time systems.

To overcome these limitations, we propose SC GAN, a multi-task generative
framework that jointly learns temporal embeddings and trajectory clusters.
SC GAN uses LSTM-based architectures to encode the sequential structure
of input trajectories and performs clustering within a learned feature space
optimized for generation and prediction tasks. In addition, it employs K-means
with Euclidean distance on the learned deep feature space, benefiting from the
efficiency of K-means while preserving the temporal structure of the data.
Hence, our approach resolves two critical limitations of K-means and TS K-
means:

1. Preservation of temporal dependencies: Temporal patterns are en-
coded via deep sequence modeling underlying a trajectory classification
task.

2. Alignment with predictive objectives: The learned clusters are op-
timized for the trajectory prediction task.

6.3 Prediction Conditioned on Future Insights

Data-driven classes aim to capture the latent structure of trajectory data and,
ideally, encode information about future motion. When data-driven classes are
derived from segments of the trajectory that extend beyond the observation
window (future- or full-driven clustering), they provide privileged informa-
tion that is not accessible at inference time. Although these classes cannot
be directly incorporated into prediction systems as future information is not
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available at inference time, they form theoretical trajectory forecasters con-
ditioned on ideal information. The performance of predictors conditioned on
ideal, future-informed class labels quantifies the upper limits of the potential
forecasting performance of trajectory predictors only with respect to the pre-
dictor’s network configuration (i.e., this upper limit does not apply to other
prediction methods). Moreover, predictors conditioned on future insights al-
low us to quantify and analyze the performance gap between practical and
potentially ideal systems, providing insights into the benefits of ideal data-
driven classes (e.g., what information they are capturing?) and the limitations
of current trajectory prediction methods. In this section, we first introduce and
formalize predictors conditioned on future insights in Sec. 6.3.1 and empirically
evaluate their behavior under various feature and clustering configurations in
Sec. 6.3.2. This analysis provides theoretical insights into the utility of data-
driven classes and informs the design of practical predictive systems explored
in Chapter 7.

6.3.1 Formalization

For a given dataset, data-driven class-conditioned predictors, whose class as-
signments are based on future trajectory states (future-driven clusters) or en-
tire trajectory states (full-driven clusters) (gray images in Fig. 6.4), can be
seen as members of a set of predictors, denoted by Sigeal, assuming there is
a finite number of f. functions to extract features from the input states.
Predictors in Sigea; are conditioned on information that depends on the future
and, thus, are impractical for real-world deployment where future states are
unavailable at inference time. Formally, we define this set as:

Stdeal = {¥f... (Sk, k) | fext € F, ¢ = Clustering( fexs(Sk, Ys,))}  (6.7)

where 17, , denotes a class-conditioned predictor, and cy, is the cluster label as-
signed to the k*" trajectory based on the features f;, extracted from the future
sequence of states Yg,, possibly in combination with the observed segment
Si in the full-driven setting. The network configuration of these predictors is
the same as the class-conditioned trajectory predictors presented in Fig. 4.1.
The only difference lies in using the cluster id ¢ as the conditioning vari-
able, which is obtained from the clustering process. These predictors serve as
valuable theoretical baselines, providing insights into the maximum achievable
performance when privileged future information is available during training
and inference.

6.3.2 Performance Analysis

This section analyzes predictors conditioned on data-driven class labels de-
rived from the K-means algorithm, focusing on comparing different input fea-
ture representations for the clustering based on the prediction accuracy re-
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Figure 6.4: Data-driven class conditioned trajectory predictors at inference
time: observation-driven clusters (left) conditioning trajectory predictors,
future-driven clusters (middle) conditioning trajectory predictors, and full-
driven clusters (right) conditioning trajectory predictors. Gray boxes indicate
the predictors conditioned on future insights, and dashed objects highlight or-
acle information (i.e., information unavailable at inference time in practical
applications).

sults. Therefore, it establishes theoretical insights by comparing predictors
with access to privileged information, such as future trajectory states, with
baseline models, including unconditional predictors and those conditioned on
observation-driven clusters.

Datasets

We conduct our analysis on two datasets: a synthetic dataset and the THOR-
MAGNI dataset previously used in Chapter 4.

The synthetic dataset is a controlled environment where we define ground-
truth observable classes according to agent-specific motion dynamics. The syn-
thetic dataset allows us to reduce class ambiguity (see Sec. 4.5.4), which enables
the study of the influence of trajectory classes on trajectory prediction per-
formance. We generate trajectories via a custom simulator with class-specific
kinematic constraints. Each trajectory belongs to one of the following agent

types:

e slow—walker: Low velocity, minimal orientation change; simulates cau-
tious or conservative agents.

e fast—walker: High velocity, low directional variability; efficient, goal-
directed motion.
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Figure 6.5: Trajectories in the synthetic dataset with four hard-coded observ-
able classes: slow—walker, fast—walker, zigzag—walker, and random—walker.

e zigzag—walker: Frequent directional changes; mimics erratic or reactive
movement.

e random—walker: High randomness in both speed and orientation; fu-
ture motion is highly stochastic.

We generate 500 trajectories per class (balanced distribution) with 8 obser-
vation and 12 prediction time steps. Fig. 6.5 depicts the synthetic trajectory
dataset.

THOR-MAGNI dataset complements our analysis by offering real-world
human motion data from a mock industrial environment. It allows us to eval-
uate how predictors perform under real-world noise and complexity and to
quantify the generalization gap between synthetic and real-world settings. We
use Scenarios 2 and 3 from THOR-MAGNTI, as previously described in Chap-
ter 4.

Baselines and Metrics
We compare predictors conditioned on cluster labels with two baselines:

1. Vanilla (class-unaware) predictors, using only the observed trajec-
tory segment as input to the predictors.
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2. Observable class-conditioned predictors, using the observed trajec-
tory segment and the human-annotated labels as inputs to the predictors.

We employ K-means on flattened inputs for trajectory clustering and use the
Davies-Bouldin Index (DBI) [24], as defined in Eq. (1.5), to select the number of
clusters. All prediction models use the single-output LSTM and Transformer-
based architectures introduced in Chapter 4. We assess model performance
using ADE and FDE, as defined in Egs. (1.1) and (1.2), averaged across 5-fold
cross-validation.

Results

Tab. 6.1 presents prediction performance for all model variants using 2D flat-
tened displacements as clustering features. Both LSTM and Transformer-based
predictors benefit substantially from conditioning on future- or full-driven
clusters, which consistently outperform baselines and data-driven condition-
ing based on observed states. The improvement achieved by these predictors
confirms the presence of latent trajectory patterns that are not captured by ob-
served segments alone. In addition, observation-driven clusters yield negligible
improvement, indicating that such clusters offer limited additional information
beyond what the model already extracts from input sequences. We also show
qualitative results in Fig. 6.6 where the difference between the representations
derived from each cluster type is clear: observation-driven induces marginal
information while future- and full-driven clusters substantially enhance tra-
jectory predictions.

We perform a detailed analysis using the synthetic dataset to understand
which trajectory types benefit most from data-driven clustering. Tab. 6.2 com-
pares performance across cluster ids, highlighting that full-driven cluster con-
ditioning yields the most substantial improvements for complex behaviors in
the synthetic dataset. Refer to Fig. 6.7 for cluster compositions and the occur-
rence matrix illustrating the correspondence between the data-driven classes
from Tab. 6.2 and the observable classes in the synthetic dataset. Those im-
provements primarily stem from the zigzag—walker and random—walker observ-
able classes, which are decomposed into multiple data-driven clusters. This
finer decomposition improves the representational discrimination of these ob-
servable classes by capturing subtle variations in motion patterns that are
otherwise abstracted when conditioning on observable classes. Furthermore,
Fig. 6.7 shows that complex trajectories (coming from the zigzag—walker and
the random—walker observable classes) are distributed across clusters 4, 5, 6,
and 7, reflecting the fine-grained distinctions captured by the clustering pro-
cess. Clusters 1 and 2 align more closely with simpler, deterministic trajectory
types (slow and fast-walker). These results suggest that data-driven classes are
particularly valuable when modeling highly non-linear and complex trajectory
patterns.
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Table 6.1: Top-1 ADE/FDE for Transformer- and LSTM-based models on the
synthetic and MAGNI datasets with 2D flattened displacements as clustering
inputs. Bold and italic values highlight the best models and second-best mod-
els, respectively.

Model Network ‘ Model Type ‘ Synthetic ‘ MAGNI

2.03£0.08 | 0.89+0.01
4.1440.12 1.9240.03

Observable 1.98+0.08 0.87+0.02

Baseline

class 3.9340.09 1.87+0.04
Transformer Observation | 2.04+0.05 | 0.89£0.02
cluster 4.0940.10 1.93+0.04

Future 1.80£0.05 | 0.65+0.01
cluster 3.61+0.06 | 1.47+0.02

Full 1.894+0.09 0.78+0.01

cluster 3.80+0.15 1.71£0.02

. 2.0440.09 0.89+0.02
Baseline

4.06+0.12 1.9240.04
Observable 1.96+0.09 0.87£0.02

class 3.9540.12 1.86+0.04
LSTM Observation | 2.03+0.09 | 0.8940.01
cluster 4.1240.13 1.92+0.03

Future 1.77+0.07 | 0.64+0.01
cluster 3.62+0.11 | 1.454+0.02

Full 1.844+0.06 | 0.77t0.01
cluster 3.76+0.18 1.69£0.02

Furthermore, we visualize and compare the observed- and future-driven
clusters derived from the synthetic dataset in Figs. 6.8 and 6.9. The observation-
driven clusters show limited diversity and contain several ambiguous groupings.
This outcome suggests that the observation horizon (8 time steps) cannot fully
capture the underlying motion patterns, resulting in suboptimal clustering due
to the lack of temporal context. In contrast, the future-driven clusters demon-
strate greater granularity and heterogeneity. These clusters more effectively
capture finer trajectory characteristics, such as speed variations and direc-
tional changes (e.g., clusters 4, 7, 13, and 15), producing a more meaningful
partitioning of the trajectory space. Altogether, these visualizations reinforce
that observed tracklets offer limited context for finding effective trajectory
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Figure 6.6: Trajectory predictions for THOR-MAGNI dataset with 2D flat-
tened displacements as clustering inputs. The observation-driven clusters in-
duce marginal information, and future- and full-driven clusters substantially
enhance trajectory predictions.

classes while future- and full-driven segments encode critical information for
discovering meaningful classes for trajectory prediction.

We further evaluate the impact of various feature representations on clus-
tering effectiveness. Using statistical summaries (e.g., velocity, acceleration,
path efficiency, PCA components) to represent trajectories yields compet-
itive results, as shown in Tab. 6.3. While ADE values are comparable to
displacement-based clustering, FDE scores are substantially improved, partic-
ularly in the real-world THOR-MAGNI dataset. This indicates that statistical
features capture final displacement trends more effectively.

Finally, we consider normalized trajectories aligned to a common frame via
translation and rotation. As shown in Tab. 6.4, performance remains on par
with displacement-based inputs (see Tab. 6.1). However, normalized features
offer superior generalization potential for unseen or dynamic environments
where invariance to scene geometry is critical.
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Table 6.2: Top-1 ADE/FDE average prediction scores per cluster id in the
synthetic dataset for 1 fold.

Cluster id | Baseline Observable | Data-driven

Class Class

1 2.11 2.04 2.08
4.12 3.98 3.84

2 0.64 0.72 0.67
3 1.80 1.75 1.76
4.48 4.33 4.38

4 2.89 2.93 2.60
5.83 5.79 4.90

5 7.28 7.02 6.44
13.06 12.34 11.36

4.66 4.52 3.91

Table 6.3: Top-1 ADE/FDE for Transformer- and LSTM-based models on the
synthetic and MAGNI datasets with statistical-based features clustering. Bold
and idtalic values highlight the best models and second-best models, respec-
tively.

Model Network ‘ Model Type ‘ Synthetic ‘ MAGNI

Observation | 2.04+0.07 0.9040.02

cluster 4.06+0.09 1.9440.04

¢ Future 1.834+0.10 | 0.654+0.01
Transtormer cluster 3.57+0.14 | 1.28+0.04
Full 1.95+0.08 | 0.71%0.01

cluster 3.81+0.15 1.89+0.08

Observation | 2.04+0.08 0.8940.02

cluster 4.13£0.12 1.924+0.04

LSTM Future 1.824+0.07 | 0.63+0.02
cluster 3.64+0.10 | 1.26+0.04

Full 1.89+0.09 | 0.69+0.01

cluster 3.74+0.15 | 1.36£0.04
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Figure 6.7: Full-driven clusters in the synthetic dataset: different motion pat-
terns are grouped in each cluster, where the slow—walker and fast—walker ob-
servable classes have particularly clear representation in two of the seven clus-
ters. The remaining clusters distinguish fine-grained dynamics present in the
zigzag-walker and random—walker observable classes. The bottom right shows
the “data-driven—observable class” occurrence matrix.

In summary, these analyses demonstrate that data-driven trajectory classes,
particularly those derived from future or full trajectories, are strong predictors
of trajectory dynamics under ideal conditions. Their superiority over vanilla
and observable class-conditioned baselines underscores the latent structure in
trajectory data that is inaccessible through observed segments alone. These
findings validate the theoretical value of predictors conditioned on future in-
sights and motivate the development of practical mechanisms to approximate
or infer such latent classes during inference.
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Figure 6.8: The limited observation horizon (8 time steps) leads to coarse and
sometimes inconsistent groupings. Several motion patterns are mixed due to
insufficient temporal context, making it difficult to distinguish between distinct
behaviors.

6.4 Self-Conditioned GAN for Learning Trajec-
tory Classes

As an alternative to the traditional clustering methods discussed in Sec. 6.2.2,
we propose a novel approach to learning trajectory classes based on deep learn-
ing methods, specifically the Self-Conditioned GAN (SC GAN) [64]. We adapt
SC GAN from image generation [64] to the trajectory clustering and genera-
tion tasks. In its original formulation, the Self-Conditioned GAN was designed
to generate realistic images and address the well-known issue of mode col-
lapse in GANs. While GANs aim to capture diverse modes from the original
data distribution, they often focus disproportionately on dominant parts when
the dataset is biased, neglecting less-represented ones. Conditional GANs [71]
partially address this limitation by incorporating explicit conditions, such as
class labels, which provide greater control over the modes generated by the
model. The Self-Conditioned GAN takes this further by using unsupervised
classes derived from the discriminator’s feature space to condition the gener-
ator, mitigating mode collapse in a self-conditioned manner. The generation
and clustering dual functionality allows the SC GAN to predict trajectories (a
useful ability we will explore in the next chapter) and automatically cluster
the data within the discriminator’s feature space during training. The Self-
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Figure 6.9: These clusters show greater diversity and behavioral specificity than
observed- and full-driven clusters, capturing fine-grained distinctions based on
motion speed (e.g., clusters 4, 7, 13, and 15) and trajectory geometry. The
future trajectory segment provides a richer context for identifying meaningful
agent classes.

Conditioned GAN leverages the features produced by the discriminator’s en-
coder to build clusters. The underlying intuition is that the discriminator’s fea-
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Table 6.4: Top-1 ADE/FDE for Transformer- and LSTM-based models on the
synthetic and MAGNI datasets with normalized trajectory clustering. Bold
and idtalic values highlight the best models and second-best models, respec-
tively.

Model Network ‘ Model Type ‘ Synthetic ‘ MAGNI

Observation | 2.05+0.05 0.9040.02

cluster 4.0840.08 1.9440.03

i Future 1.79+0.12 | 0.67+0.02
Transformer cluster 3.58+0.18 | 1.50+0.03
Full 1.80+£0.10 | 0.65+0.01

cluster 3.61£0.16 | 1.42+0.02

Observation | 2.074+0.07 0.884+0.02

cluster 4.19+0.11 1.914+0.03

Future 1.77+0.06 | 0.67+0.01

LSTM cluster 3.60-0.10 | 1.51+0.03
Full 1.83+£0.10 | 0.65+0.02

cluster 3.71+0.15 | 1.44£0.04

ture space, designed to differentiate real from generated samples, inherently
extracts meaningful representations that can be used for other downstream
tasks [77]. For instance, the discriminator has been used in other trajectory
prediction methods to filter socially acceptable future trajectories [51]. Finally,
the Self-Conditioned GAN creates a synergistic relationship between trajectory
clustering and generation, where the quality of the clusters directly influences
trajectory generation, and the generation process, in turn, iteratively refines
the clusters. This integration ensures that the clusters are deeply embedded
in the trajectory generation and prediction tasks, stressing their relevance and
effectiveness.

6.4.1 Overall Model Architecture

The goal of SC GAN is to estimate the mapping defined in Eq. (6.1) by lever-
aging the samples processed within a GAN-based framework while generating
trajectories conditioned on such clusters. Those clusters are derived from fea-
tures extracted from the discriminator’s encoder:

Encp: Yi—cr, ok €{1,...,N.}, (6.8)

where Encp is the discriminator’s encoder, and Y}, corresponds to the trajec-
tory displacements given by the finite differences of 2D positions. For future-
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driven clusters, Y comprises only the future trajectory displacements follow-
ing Si, the observed tracklet comprising the observed displacements. Alterna-
tively, full-driven clusters include the entire vector of displacements, similar to
generating an entire trajectory starting from the origin of a 2D reference frame
(0,0). Hence, the SC GAN framework provides two distinct clustering modes
as illustrated in Fig. 6.10: future-driven clusters (FD SC GAN in blue) and
full-driven clusters (FP SC GAN in red). In both cases, the resulting predictors
are members of the set Siqeal, as they rely on future trajectory information
not available at inference time for the prediction task.

As outlined in Sec. 4.3.2, the GAN’s discriminator (D) consists of two
main components: a temporal encoder (Encp) and an MLP. The temporal
encoder, implemented as an LSTM, processes trajectory states to extract time-
dependent features, which are passed through a K-means clustering step. Those
features are subsequently fed into the MLP to produce the final discriminative
score. During trajectory generation, the cluster indices condition the generator
(G), producing samples corresponding to the conditioning clusters.

To maintain the relevance of trajectory clusters as the discriminator’s repre-
sentational power evolves, the feature space is periodically re-clustered during
training, following the approach outlined in [64]. This dynamic updating en-
ables the framework to capture increasingly refined trajectory patterns over
time. To avoid the computational overhead of retraining the GAN entirely
after each re-clustering step, we apply the classical Hungarian minimum-cost
matching algorithm [57]. This algorithm efficiently aligns the newly derived
clusters {c¢"W (D} Ne with the existing clusters {c'd ("} Ne by minimizing:

Nc
Ematch (P) — Z ’Cold,(i) \cnew,p(z‘) ’7 (6.9)

=1

where p is the permutation function that we aim to find, and |c?1d:()\ crew.»(0)|
represents the number of samples in the old cluster i that are missing from the
new cluster p(4). Alg. 1 summarizes the entire training process of SC GAN.

6.4.2 Future-driven SC GAN

The training data for this task, {(Sk, Ys,, Ps, )}, consists of triplets of track-
lets, the futures, and the corresponding ground truth positions. FD SC GAN
processes the input trajectory states (Sg), incorporates the cluster id (cg),
and generates the future states predictions (Yg, ). Here, the cluster id ()
represents the cluster to which the embeddings of the k" sample belong. As
described in Sec. 6.4.1, Y}, corresponds to the future of a tracklet (Yg, ), in-
dicating that the generator functions as a trajectory predictor. Thus, akin to
the GAN-based forecasting model (see Sec. 4.3.2), the generator’s loss func-
tion combines the prediction loss (MSE) with the GAN loss (see Eq. (4.5)).
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Figure 6.10: SC GAN architecture for generating future-driven clusters
(FD SC GAN in blue) and full-driven clusters (FP SC GAN in red) embedded
in the trajectory generation task. Top: During the discriminator’s training, in-
puts consist of either generated samples (Y'k) or real samples (Yy). Features
extracted from real samples are clustered to drive the generator’s outcomes.
Bottom: During the generator’s training, the cluster indices obtained from
the discriminator’s feature space condition the generator, guiding its output.

The distinction from the vanilla GAN-based forecaster lies in including the
data-driven cluster id, cg, which explicitly influences the prediction.

This approach’s resulting clusters are based solely on future trajectory
data, without connection to the observed tracklets. This lack of connection
introduces challenges when integrating future-driven clustering into trajectory
prediction frameworks, particularly during inference. Since the clustering pro-
cess relies solely on future trajectory information (unavailable at inference
time), it becomes non-trivial to establish a link between the observed tracklets
and the appropriate clusters. Without this link, the predictor cannot effectively
leverage future-driven clusters during inference, making their integration into
a practical prediction pipeline difficult. Therefore, future-driven clusters rep-
resent possible futures and can only implicitly provide this information to
downstream predictors (see Sec. 7.2). In contrast, full-driven clusters (detailed
in Sec. 6.4.3) offer a more practical alternative for end-to-end trajectory pre-
diction. By incorporating information from both the observed tracklet and the
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Algorithm 1 Training Process of Self-Conditioned GAN

Require: Training data {(Yx,Pvy,)}r (trajectory states and ground truth
positions), number of clusters N,
1: Initialize GAN components: generator G, discriminator D (with temporal
encoder Encp and MLP).

2: Run K-means on Encp outputs {cod(®}Ne |

3: while training not converged do

4: Step 1: Discriminator Training

5: sk = (MLP o Encp)(Yy) > Discriminator’s scores.

6: Update D using the BCE loss.

7 Step 2: Generator Training

8: fi. = Encp(Yk) > Temporal features from discriminator.

9: ¢, = K-means inference(fy,) > Get class from ground-truth sample.

10: Y, = G(zG,k,ck) > Include Sy in the input if future-driven clusters.

11: Update G using Eq. (4.5) if future-driven or Eq. (6.10) if full-driven
clusters.

12: Step 3: Re-clustering (Periodic)

13: if re-clustering condition met then

14: Re-cluster the discriminator’s feature space with K-means.

15: Find the matching p that minimizes Eq. (6.9).

16: Update {0} Ne, < {erewp(yNe |

17: end if
18: end while
19: return Trained SC GAN model

future, they provide a cohesive representation that simplifies their application
in prediction frameworks.

6.4.3 Full-driven SC GAN

The training data for this task, {Yg, Py }x, consists of tuples of ground truth
displacements and the corresponding 2D positions. As illustrated in Fig. 6.10,
the primary distinction from the previously described FD SC GAN lies in the
generator’s inputs. Here, the generator relies solely on Gaussian noise (zg k)
and the clustering id, ¢, sampled from the corresponding clustering distribu-
tion. Unlike the future-driven case, the cluster index in this context represents
the cluster encompassing the entire trajectory’s states for the k' sample. Ad-
ditionally, Y corresponds to the entire displacements vector, indicating that
the generator produces complete synthetic trajectories translated to the origin
of the 2D reference frame. In this setup, the generator’s loss function combines
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a reconstruction loss (MSE over the entire trajectory) with the GAN loss, as
follows:

Lor(Y,Y) = Aiuser + %o (FEUD(Y) - 1]+ SEIDOVA ). (6.10)

where the trajectory reconstruction term Lysg_r is given by:

Lyse-r(Y,Y) ZHPJ B;ll3- (6.11)

6.4.4 Experiments

This subsection presents an evaluation of the SC GAN framework and other
class-conditioned trajectory prediction methods to show the representational
power of SC GAN in practical prediction settings. Specifically, we first com-
pare FD SC GAN with the observable conditioned counterpart predictor and
then FP SC GAN with other clustering methods, both quantitatively and
qualitatively.

Datasets

We evaluate SC GAN using two experimental protocols: (1) a train/test split
for in-distribution evaluation of FD SC GAN (future-driven) and (2) a leave-
one-dataset-out setting for cross-domain generalization of FP SC GAN (full-
driven). FD SC GAN evaluation is conducted on THOR [83] and Argoverse [17]
(see Fig. 6.11). These datasets provide diverse scenarios representing indoor
robotics and road-based environments, respectively. The THOR dataset con-
sists of trajectories of humans operating in an industrial-like environment. The
dataset includes three experimental scenarios where individuals move between
goal points while engaged in industrial-tailored activities (see Sec. 2.1.2), as-
suming one of three roles: 5-6 participants as Visitors, two as workers, and
one as inspector. Inspired by established benchmarks [52], we segmented each
trajectory into tracks of 8-time steps (3.2s) for observation and 12-time steps
(4.88) for prediction. To prepare the data for experiments, we applied prepro-
cessing steps® based on [82], which include:

1. Downsampling the signal to 400 ms intervals.
2. Linearly interpolating missing detections to ensure continuity.

3. Smoothing trajectories using a moving average filter with a window size
of 800 ms.

Thttps://github.com/tmralmeida/pythor-tools
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Figure 6.11: Trajectories in the THOR (left) and Argoverse (right) datasets.

ETH HOTEL UNIV ZARAL ZARA2

Figure 6.12: Trajectories in the ETH/UCY benchmark.

The Argoverse dataset comprises trajectories collected in road environments
involving three distinct agent types: autonomous vehicles (av), regular vehicles
(agents), and other road users (others). Each trajectory consists of observed
tracklets spanning 20 time steps (2s) and corresponding predictions over 30
time steps (3 s). Following [16], we sampled 5726 trajectories for training, 2100
for validation, and 1678 for testing. We train and evaluate our methods 5 times
and average the final scores in both datasets.

FP SC GAN leave-one-dataset-out evaluation is conducted on the widely
adopted ETH/UCY benchmark [60, 76] comprising five datasets: ETH, HO-
TEL, UNIV, ZARA1, and ZARA2 (Fig. 6.12). This benchmark has an obser-
vation length of 8-time steps (3.2s) and a prediction length of 12-time steps
(4.85), consistent with THOR. We do not overlap segments of entire trajecto-
ries. In this setup, four datasets are used for training, while the remaining one
is used for testing. We repeat the leave-one-dataset-out experiment five times
and report averaged metrics.

Baselines and Metrics

The baseline models share the same configuration as the one used for our
SC GAN variants, but with other conditioning classes. For instance, the con-
ditioning classes are the observable classes for the class-conditioned GAN
(cGAN). In contrast, for our FD SC GAN, the conditioning classes are the
data-driven classes from an entire sequence of trajectory states (see Tab. 6.6).
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Table 6.5: Number of clusters found in the training set of each dataset.

Dataset ‘ K-means ‘ TS K-means ‘ FP SC GAN

THOR 12
Argoverse
ETH
HOTEL
UNIV
ZARA1
ZARA2

ClUt Ut W
NSRS I =N S IR

Ut Ot Ut Ut Ut Ot

For trajectory prediction, we report Top-K ADE and FDE for K = 1
and K = 3, as defined in Egs. (1.1) and (1.2). To determine the number of
clusters for trajectory clustering, we use the Davies-Bouldin Index (DBI), as
defined in Eq. (1.5). The resulting optimal number of clusters for the three
datasets is reported in Tab. 6.5. As we can see, the number of clusters varies
across datasets, with K-means and TS K-means yielding similar results for all
datasets except for THOR, while FP SC GAN presents more diversified results
than the other traditional clustering methods.

Results

We start by evaluating the impact of future-driven trajectory classes on predic-
tion accuracy. Specifically, we compare the performance of FD SC GAN, which
conditions on clusters derived from future trajectory segments, with an observ-
able class-conditioned GAN (cGAN). Tab. 6.6 presents the Top-1 ADE and
FDE metrics on the test sets of the THOR and Argoverse datasets. Across
both domains, FD SC GAN consistently outperforms the observable class-
conditioned baseline. These results indicate that, when assumed to be known,
future-driven trajectory classes provide more informative and predictive con-
ditioning signals than human-annotated semantic classes. This supports the
hypothesis that clustering based on motion dynamics offers a more discrim-
inative basis for forecasting than externally defined categories. In addition,
SC GAN is validated as a framework providing powerful data-driven signals
for trajectory prediction.

To evaluate the effectiveness of FP SC GAN (full-driven clustering) in
trajectory prediction, we integrate it into a multi-stage predictive framework
in which clustering explicitly conditions the prediction process. This approach
enables the model to exploit the representational benefits of data-driven classes
derived from entire trajectory segments. The predictive framework is described
in detail in Sec. 7.3.

Across most datasets, predictors conditioned on trajectory classes derived
from K-means, TS K-means, and FP SC GAN demonstrate comparable per-
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Table 6.6: Top-1 ADE/FDE metrics (in meters) in the test sets for our future-
driven SC GAN and the observable class-conditional counterpart. Bold values
highlight the best prediction scores.

Dataset ‘ cGAN ‘ FD SC GAN
. 0.66 = 0.01 | 0.59 + 0.01
THOR 1.114+0.01 | 0.94 + 0.02
A 1.9240.02 | 1.79 + 0.01
TEOVELSE 1 3 39 4 0.03 | 2.89 + 0.04

Table 6.7: Top-3 ADE and FDE (J,) metrics in the HOTEL test set for a condi-
tioned GAN predictor conditioned on classes derived from different clustering
algorithms. Bold values highlight the best prediction scores.

Method ADE FDE

Baseline 0.87+0.07 1.6440.12
K-means 1.03 +0.05 1.90 £ 0.09
TS K-means | 1.04 +0.05 1.81 4+ 0.06
FP SC GAN | 0.80+0.10 1.44+0.12

formance. This result suggests that all three clustering methods are capable of
capturing motion patterns relevant to trajectory forecasting and of transferring
this structure to the predictor. However, an exception is observed in the HO-
TEL scene from the ETH/UCY benchmark. As previously reported by [88], the
training set in this scene is dominated by horizontal motion, whereas the test
set primarily contains vertical trajectories. This domain shift is illustrated in
Fig. 6.13, which shows that the majority of test samples satisfy the inequality
lye+1 — yt| > |xe41 — x|, VE € {1, Tp}, in contrast to the training distribu-
tion. Such a shift hinders models that rely heavily on environment-dependent
patterns, highlighting the importance of robustness to spatial biases in predic-
tive systems. Tab. 6.7 summarizes the prediction performance of GAN-based
models conditioned on clusters derived from various algorithms. Among them,
FP SC GAN consistently outperforms traditional clustering-based predictors,
demonstrating robustness under distribution drifts. These results suggest that
FP SC GAN clusters can better generalize across variations in navigational
styles by capturing underrepresented modes in the data.

Contrary to traditional clustering methods, FP SC GAN stands out not
only as a clustering tool but also as a generative model. As described in Sec. 6.4,
its dual mechanism allows clustering to guide generation, thus avoiding mode
collapse, while the generative process reinforces meaningful clustering. To il-
lustrate this advantage, we compare FP SC GAN with a variant named Full
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Figure 6.13: Trajectories and directional statistics in the HOTEL dataset. Top:
Sampled trajectories from the training and test splits. Bottom: Proportion
of trajectories showing vertical (|ys41 — y¢| > |xs41 — x¢|) versus horizontal
motion, highlighting the distributional drift between train and test sets.

Path GAN (FP GAN), which shares the same architecture and training proto-
col but omits the clustering conditioning mechanism. Fig. 6.14 shows generated
trajectories (translated to the origin) for the UNIV dataset using variety loss
with N, = 7. The vanilla FP GAN faces mode collapse, generating only a nar-
row set of behaviors. In contrast, FP SC GAN produces a more diverse and
representative set of trajectories, covering the broader motion spectrum of the
dataset.

We depict the differences in cluster formation across methods in Fig. 6.15
using the THOR dataset. While K-means identifies only three clusters, TS K-
means and FP SC GAN capture a richer and more fine-grained structure in the
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Figure 6.14: Overlapping between ground truth and generated samples from:
FP GAN (left) without conditioning and FP SC GAN (right).
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Figure 6.15: Clusters from each clustering method: K-means (left), TS K-
means (middle), and FP SC GAN (right).

data. This discrepancy reflects the inability of K-means to capture temporal
dynamics, as it operates on flattened representations, whereas TS K-means
and FP SC GAN preserve time-series characteristics.

To better understand what makes specific trajectory patterns more diffi-
cult to predict, Fig. 6.16 shows examples from the most and least challeng-
ing clusters in THOR. The most challenging clusters, defined by the highest
ADE/FDE, primarily contain non-linear trajectories with turns or abrupt di-
rectional changes. In contrast, the least challenging clusters are composed of
nearly straight trajectories. This observation reinforces the connection between
trajectory complexity and prediction error, as complex motions are harder to



130 CHAPTER 6. LEARNING DATA-DRIVEN CLASSES

model and tend to correspond to underrepresented modes in GAN training.
This information is crucial to improve the prediction of the most challenging
groups of trajectories detailed in Sec. 7.2.

Lastly, Fig. 6.17 presents randomly selected clusters from THOR and Ar-
goverse, providing qualitative insights into the types of structure captured
by FP SC GAN. These examples demonstrate that the FP SC GAN effec-
tively groups trajectories with shared characteristics. In the THOR dataset,
which features a constrained indoor environment, trajectories are less linear
compared to road environments like Argoverse, where agents typically move
along straighter paths with fewer directional changes. The most distinguishing
trajectory motion patterns differ between the datasets: in THOR, movement
direction is the dominant feature, while in Argoverse, navigation distance plays
a more important role.

In summary, our results demonstrate that future-driven SC GAN consis-
tently outperforms a GAN model based on observable classes (cGAN). This
indicates that the data-driven classes found in the discriminator’s feature space
of SC GAN, grounded in the dynamics of future motion, constitute a more in-
formative and discriminative representation than human-annotated observable
labels in both the THOR and Argoverse datasets. Furthermore, while full-
driven SC GAN achieves predictive performance comparable to traditional
clustering techniques such as K-means and TS K-means, it yields more gen-
eralizable cluster structures, especially under distributional drifts. Finally, our
visual analyses confirm that SC GAN clusters not only capture meaningful
behavioral patterns but also reflect underlying structural complexity in the
trajectory space. These insights are further leveraged in the predictive archi-
tectures developed in Chapter 7, where we exploit these learned clusters to
enhance trajectory forecasting.

6.5 Conclusions and Outlook

Observable classes and actions per frame enhance trajectory prediction and
provide semantic interpretability. However, observable classes are sometimes
ambiguous, and actions rely on external perception modules susceptible to
detection errors and noise. This chapter introduced an alternative approach:
data-driven trajectory classes derived solely from motion trajectory dynamics
without requiring external semantic annotations. Although less interpretable,
these classes show higher consistency and predictive utility in synthetic and
real-world environments, depending on future trajectory states. Consequently,
we also introduced the concept of predictors conditioned on future insights,
which assumes access to future trajectory information. While not deployable
in practice, these models are theoretical baselines that demonstrate the utility
of data-driven trajectory classes. They also provide valuable signals that can
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Figure 6.16: Examples of trajectories randomly sampled from THOR’s training
set for the most challenging cluster (top) and the least challenging cluster
(bottom). The most challenging cluster encompasses non-linear trajectories,
while the least challenging trajectories are predominantly linear.
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Figure 6.17: Examples of trajectories randomly sampled from the THOR (left)
and Argoverse (right) datasets, with crosses denoting the starting points of
each tracklet. In THOR, trajectories from cluster 9 predominantly move from
right to left, while those from cluster 10 feature from left to right movements.
In Argoverse, trajectories from cluster 0 are substantially longer compared to
those from cluster 18.

be exploited in practical systems (see Secs. 7.2 and 7.3). A comprehensive
empirical analysis of such predictors showed that:

e Clusters derived from future or full trajectory segments outperform those
based on observed segments or observable classes, confirming their ca-
pacity to encode latent dynamics.

e Clusters derived from statistical features yield lower FDE than raw
displacement-based representations, particularly in real-world data.

e Data-driven classes substantially improve predictions for complex, non-
linear trajectories, such as those in the zigzag-walker and random-walker
categories of the synthetic dataset in Sec. 6.3.2.

Furthermore, we proposed an alternative deep learning-based framework to
traditional clustering methods, which are either limited in capturing misaligned
temporal dynamics (K-means) or are computationally expensive (TS K-means).
Our SC GAN leverages a GAN-based architecture underlying LSTM networks
for trajectory data modeling and deep feature space clustering. Empirical re-
sults demonstrate that SC GAN outperforms traditional clustering techniques,
especially under data drifting, as illustrated in the HOTEL dataset from the
ETH/UCY benchmark [60, 76].

In summary, data-driven trajectory classes outperform semantically defined
observable labels under ideal conditions where class labels from future states
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are available. Our results highlight the potential of data-driven classes in en-
hancing trajectory prediction. We extend this work in Chapter 7 by integrating
these data-driven classes into practical trajectory prediction systems.






Chapter 7

Trajectory Prediction with
Data-driven Classes

FEveryone sees what you appear to be, few experience what you really are.
— Niccolo Machiavelli

Data-driven contextual information provides a compelling alternative for
overcoming the limitations of observable classes in trajectory prediction. As
established in Chapter 6, data-driven classes derived from future or full trajec-
tory segments offer informative representations that capture motion patterns
and latent behavioral cues crucial to enhance trajectory predictions. The chal-
lenge, however, lies in how to effectively integrate these classes into trajectory
prediction frameworks in a manner that is both robust and practically useful.
In Chapter 6, we have also shown that future- and full-driven clusters can be
used to improve the representation of the observed tracklet, but such clusters
are not available during the inference phase. Specifically, future-driven clusters
represent the distribution of future trajectories, while full-driven clusters are
more holistic representations integrating both observed and future trajectory
information. Therefore, this chapter presents two strategies for incorporating
data-driven trajectory classes into trajectory prediction systems to enhance
robustness, accuracy, and generalization, benefiting from the representation
value of both future- and full-driven clusters. First, we address the limita-
tions of context-agnostic GAN-based predictors, which often suffer from the
mode collapse problem where the generator overfits dominant patterns and
fails to capture the full diversity of the data distribution. To mitigate this is-
sue, we introduce novel training strategies exploiting the future-driven clusters
obtained from SC GAN (see Sec. 6.4.2). By employing a weighted loss func-
tion and balanced batch sampling informed by data-driven class distributions
and prediction errors, we encourage broader coverage of trajectory modes and
improved generalization. Second, we propose a multi-stage probabilistic pre-
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diction framework that explicitly conditions generative models on full-driven
trajectory classes. This approach comprises four stages: transforming trajec-
tories to the displacement space, clustering full-driven trajectory states via
full-driven SC GAN, training class-conditioned generative models, and rank-
ing the generated predictions. To improve efficiency and scalability, we propose
novel distance-based ranking techniques for trajectory selection, which outper-
form neural scoring modules in terms of computational cost while maintaining
competitive accuracy. The framework outperforms class-agnostic baselines on
datasets of both human and road agents and performs competitively against
deterministic single-output models when evaluated on the most probable pre-
diction. Together, these strategies provide a comprehensive study of how data-
driven classes can be leveraged to improve trajectory prediction, balancing
predictive performance, scalability, and representational clarity.

7.1 Introduction

7.1.1 Motivation and Contributions

In this thesis, data-driven classes can be derived from three trajectory seg-
ments: (1) the observed tracklet (observation-driven clusters), (2) the future
segment (future-driven clusters), or (3) the full trajectory (full-driven clusters).
As established in Chapter 6, clusters based solely on observed trajectories in-
herently reflect information already available to the predictor. Since trajectory
prediction models are trained directly on this observed input, observation-
driven clusters do not introduce novel priors or additional structure, and thus,
this thesis does not further explore such clusters as part of practical trajec-
tory predictors. In contrast, future-driven clusters provide valuable forward-
looking information, capturing the diversity and structure of potential future
outcomes. A predictor conditioned on these clusters benefits from privileged
information on the multiple possible future trajectories. Building on these in-
sights, we propose novel training strategies that force the learning of groups of
trajectories that are hard to predict. Specifically, we leverage the future-driven
clusters obtained from the Self-Conditioned GAN described in Sec. 6.4 to iden-
tify challenging modes in the data distribution and improve the training of a
vanilla GAN-based predictor. This approach mitigates the mode collapse prob-
lem, enhancing the generator’s ability to cover broader trajectory patterns.
Full-driven clusters encompass information from observed and future tra-
jectories, providing a more comprehensive representation of trajectory pat-
terns. These clusters can act as a bridge, linking the observed tracklet to
future outcomes. This connection is crucial for trajectory prediction, allow-
ing the model to leverage a holistic representation of the trajectory data. In
this context, we integrate full-driven clusters into a multi-stage probabilistic
prediction framework, where the first stage involves clustering the full tra-
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Figure 7.1: Data-driven classes for trajectory prediction: human motion trajec-
tories are clustered into data-driven classes that are either (1) future-driven,
used to guide the training of GAN-based predictors, or (2) full-driven, ex-
plicitly used to condition predictors during training. In the latter case, the
clustering space is used to assign probabilities to the predicted trajectories
during inference.

jectory states. This multi-stage approach is more effective than data-driven
class-agnostic baselines in several trajectory prediction benchmarks.

In summary, the distinction between future- and full-driven clusters lies in
their respective scopes: future-driven clusters focus on capturing the distribu-
tion of possible future trajectories, supporting multimodal trajectory predic-
tion (see Sec. 1.2.2). In contrast, full-driven clusters integrate the context of the
observed tracklet with future trajectory information, offering a more compre-
hensive view of the entire trajectory. Understanding the utility and trade-offs
of these clustering approaches is critical for advancing trajectory prediction
methods. This chapter studies future- and full-driven clusters for trajectory
prediction. Fig. 7.1 illustrates the key contributions of this chapter:

e We show how future-driven clusters mitigate the mode collapse problem
on GAN-based trajectory predictors, improving their ability to model
diverse future trajectory patterns.

e We demonstrate how full-driven trajectory classes can seamlessly and
explicitly integrate into a multi-stage probabilistic prediction framework.
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7.1.2 Outline

This chapter is organized as follows. Sec. 7.2 introduces novel training strate-
gies for GAN-based trajectory predictors, leveraging future-driven clusters to
improve mode coverage and mitigate mode collapse. This section also details
the experimental setup and provides empirical results demonstrating the ef-
fectiveness of the proposed strategies. Sec. 7.3 presents a multi-stage proba-
bilistic prediction framework that explicitly conditions generative models on
full-driven trajectory clusters. The section includes implementation details,
evaluation methodology, and results that validate the performance and gener-
alizability of the proposed approach. Finally, Sec. 7.4 summarizes the chapter’s
key contributions and insights, outlining the broader implications of integrat-
ing data-driven trajectory classes into prediction systems.

7.2 Future-driven Clusters for Prediction

7.2.1 SC GAN for Diverse Prediction

GAN-based frameworks are prone to mode collapse, where the generator fails
to capture less dominant or underrepresented modes in the data. Therefore, the
goal is to improve the vanilla GAN training process by mitigating mode col-
lapse and enhancing the generator’s ability to cover the most challenging modes
from the input data distribution. While future-driven clusters may be challeng-
ing to integrate directly into end-to-end trajectory prediction, the training
process of the future-driven Self-Conditioned GAN (FD SC GAN described in
Sec. 6.4.2) offers valuable insights into the most challenging modes to recover.
The clusters produced by the FD SC GAN divide the future trajectory data
into distinct regions, offering a mechanism to identify regions where the predic-
tor struggles to accurately recover the future of observed tracklets. Leveraging
this information, we propose an improved vanilla GAN training approach that
prioritizes the harder-to-predict examples identified by the FD SC GAN. In
practice, we propose to penalize and sample more examples that are harder to
predict during the vanilla GAN training. To guide this process, we define a set
of soft-assumptions — “soft” because they may be erroneous due to the natural
errors from FD SC GAN’s training — driven from FD SC GAN’s clustering
space:

o We assume that FD SC GAN'’s clusters group similar future (Yg) based
on trajectories’ state representation (S).

e Clusters associated with higher prediction errors, such as Average and
Final Displacement Errors (defined in Sec. 1.2.3), represent modes that
are harder to recover and consequently require additional focus during
training.
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An overview of the entire process is depicted in Fig. 7.2, and we integrate the
described assumptions into three training strategies for a vanilla GAN:

1. Weighted MSE loss (wMSE): This approach adjusts the generator’s Mean
Squared Error term to emphasize trajectories from challenging subspaces
representing modes less likely to be recovered. The weight applied to the
MSE term in the generator’s loss of the trajectories in cluster ¢, initially
defined in Eq. (4.5), is modified as follows:

. ADE® FDE® (1)
AD = AApE o + AFDE == + ADist IT,
ot

ADEax FDEmax

where ADE® and FDE® are the Average and the Final Displacement
Errors of cluster i, respectively, obtained by the FD SC GAN; ADE,,. =
maxje{L__ch}{ADE(j)} and FDE.x = maxje{17___7NC}{FDE(j)}; #()
and #ro¢ are the number of samples in cluster ¢ and the total number of
samples in the clustering space, respectively, mitigating the influence of
outliers. Finally, Aapg, ArpE, and Ap;st are weights applied to the ADE,
FDE, and clustering distribution terms.

(7.1)

2. Weighted batch sampler (wB): This strategy uses a multinomial distri-
bution to sample trajectories during training, from which the probability
of sampling trajectories from cluster i is given by:

) A
p(z) = SN (7-2)
T AG

where A is the weight assigned to cluster i, as defined in Eq. (7.1).
wB ensures that harder-to-predict clusters are seen more often during
training.

3. Combination of weighted MSE loss and batch sampler (wMSE+wB):
This approach combines the weighted MSE loss and the weighted batch
sampling strategies to adjust the loss function and data sampling process
simultaneously.

7.2.2 Experiments
Datasets, Baselines and Metrics

We evaluate our proposed methods on two distinct domains: the indoor human
motion dataset THOR [83], and the urban traffic dataset Argoverse [17], which
contains road user trajectories. Both datasets and corresponding preprocess-
ing are described in Sec. 6.4.4. To emphasize the learning of underrepresented
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Figure 7.2: Proposed framework’s overview based on future-driven trajectory
classes. First, FD SC GAN learns the future-driven clusters (or modes) of

the input data. Then, this information is used as training settings (via soft-
assumptions) to improve the prediction of specific modes.

agent classes in Argoverse, we applied a constraint when constructing the train-
ing set: 2600 trajectories from av, 2600 from agents, and 526 from others (factor
of ~ 5 times). We evaluate our proposed training configurations against two
baseline approaches: the RED method [7], and a Vanilla GAN model inspired
by Trajnet++ [52]. These baselines are comparable to those used in Chapter 4.
We report the Top-1 ADE/FDE scores in meters in the test set as the average
of five runs.

7.2.3 Quantitative Results

The Self-Conditioned GAN framework leverages clustering to capture similar
and discriminative features in the trajectory data. Since it relies on K-means
clustering (see Sec. 6.4.1), the number of clusters needs to be predefined. We
determined this number through a grid search on the validation sets, selecting
the configuration that maximized ADE performance. The number of clusters
was 13 for the THOR dataset and 19 for the Argoverse dataset.

In the first experiment, we show the intra-observed class performance of our
approaches. Tab. 7.1 presents the prediction results for the evaluated methods,
where observable classes in italic are the least predominant in the training set.
According to the ADE and FDE metrics in the least representative agent
classes, our approach based on the weighted batch sampler setting (GAN wB)
and the combination of the two settings (GAN wMSE + wB) outperforms the
baselines in both datasets. Therefore, the proposed training settings drive the
generator to learn the most challenging unsupervised subspaces, enhancing the
prediction of the least representative observable classes. We speculate that the
trajectories of the least predominant agent classes lie on the most challenging
clusters. Furthermore, in the THOR dataset, the difference between the results
for the inspector is not as clear as for the workers role. This difference might
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Table 7.1: Intra-observable classes ADE/FDE metrics in the test sets. Bold
values highlight superior performance of our methods in the least predominant

observable classes.

Baselines Ours

Datasot Labels LSTM GAN GAN GAN GAN
atase (# samples) [7] [52] wMSE wB wMSE + wB
workers 0.695  0.642+0.006 | 0.629+0.005  0.644+0.012 0.625 + 0.009
(413) 1.064  1.03340.005 | 1.00940.014  1.044+0.028 1.006 + 0.019
) visitors 0.664  0.660 +0.001 | 0.657 +0.003 0.668 +0.005  0.657 & 0.003
THOR. (1379) 1.139  1.10540.090 | 1.107+0.007 1.12440.018  1.113+0.013
inspector | 0.796  0.735+£0.007 | 0.736£0.008 0.729+0.013  0.734 + 0.003
(260) 1582  1.47440.019 | 1.473+0.013 1.479+0.049  1.476 +£0.015
others 1.864  1.81540.031 | 1.799+0.007 1.78940.012 1.801 +0.027
(526) 3.020  2.969+0.034 | 2.94440.022  2.927+0.020 2.919 +0.032
Ar ‘ av 1.512  1.467+0.007 | 1.482+0.009 1.480+0.003  1.493 + 0.010
rgoverse (2600) 2278  2.269+0.023 | 2.292+0.010 2.282+0.006  2.298 & 0.028
agent 2371  2.349+0.012 | 2.362+0.013  2.368+0.020  2.371 4+ 0.012
(2600) 4.690 4.654+0.016 | 4.700+£0.029  4.721+0.044  4.724 4+ 0.027

be due to the dataset design since workers had to carry materials (e.g., boxes),
whereas the inspector and visitors have much more similar motion patterns [83].

Tab. 7.2 presents the results for two trajectory groups based on the Self-
Conditioned GAN'’s clustering space. We report the performance for the most
challenging and least predominant clusters (clusters 9 and 10 for THOR and
Argoverse, respectively), where the Self-Conditioned GAN shows the worst
intra-cluster results, and for the most dominant clusters (clusters 0 and 18
for THOR and Argoverse, respectively), which contain the largest number of
samples. As expected, the results indicate a correlation between the number of
trajectories within a cluster and the metrics achieved by each method: smaller
clusters with fewer trajectories yield higher ADE/FDE scores, while dominant
clusters with more trajectories achieve better prediction performance. That is,
clusters with fewer trajectories present worse ADE/FDE scores, while dom-
inant clusters present better prediction performance. Finally, our proposed
training settings outperform the baselines in the most challenging clusters,
supporting the described soft assumptions and achieving comparable results
in the dominant trajectory groups.

Finally, Tab. 7.3 presents the overall results for both datasets. In the THOR
dataset, our weighted MSE training setting improved the average performance
across both ADE and FDE metrics. However, in the Argoverse dataset, where
the number of samples for the least representative class (others) was inten-
tionally kept very small, the average scores did not improve. Nevertheless, our
approach consistently enhanced the performance for the least dominant clus-
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Table 7.2: ADE/FDE metrics for 2 clusters of the test set. Bold values indicate
the superior performance of our methods in the least dominant clusters across
both datasets, as well as in the most dominant cluster in the Argoverse dataset.

‘ Baselines Ours
Datase | Cluster ID | LSTM GAN GAN GAN GAN

ataset (# samples) [7] [52] wMSE wB wMSE + wB
9 1.203  1.12040.025 | 1.05440.048 1.124+0.038  1.039 +0.055

(23) 2456  2.758 £0.082 | 2.505-+0.134 2.8114+0.136  2.505 + 0.105

THOR 0 0.325 0.311+0.003 | 0.321+£0.004 0.317£0.007  0.315 = 0.002

(1003) 0.447 0.403+£0.010 | 0.419+£0.015 0.416+0.021  0.424 +0.017

10 7.394  7.184+£0.178 | 7.105-0.123  7.1224+0.055  7.047 + 0.088
(16) 19.075 18.402 +£0.415 | 18.233 £0.297 18.276 0.113 18.128 +0.194

Argoverse 18 0.912  0.80940.016 | 0.807+£0.010  0.805+0.007  0.795 + 0.008
(1542) 1.148  1.10040.017 | 1.08840.027 1.079+0.012  1.055 - 0.030

Table 7.3: ADE/FDE metrics in the test sets. Bold values indicate superior
performance of our methods in the THOR dataset.

‘ Baselines ‘ Ours
Datacet | ESTM CGAN CAN CGAN GAN
aase 7] 52| wMSE wB wMSE + wB
THOR | 0-685  0.663£0.002 | 0.658+0.008  0.668+0.003  0.658 & 0.002
1163  1.123+0.019 | 1.1194+0.009 1.119+0.009 1.122+0.013
Arsoverse | 1948 191240012 [ 191540.012  1.915%0.009  1.923£0.010
BOVEISC | 3330 3.298+0.014 | 3.307+0.017  3.310+0.018  3.307 + 0.014

ters in both datasets, demonstrating its effectiveness in recovering challenging
subspaces of the trajectory data.

7.2.4 Qualitative Results

We present qualitative results of the prediction methods in Fig. 7.3, focusing
on complex trajectories. In the proposed Self-Conditioned GAN framework,
such complex trajectories pertain to small and non-dominant clusters. Our
approach, leveraging the weighted loss function and batch sampling strategies,
produces predictions that align more closely with the ground truth in these
challenging scenarios. By leveraging the weighted objective function and batch
sampling strategies, our approach prioritizes these complex trajectories during
training, enabling the model to effectively address their intricacies and recover
their modes, as demonstrated in Fig. 7.3.
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Figure 7.3: Examples of trajectory forecasting on the THOR (left) and Argov-
erse (right) datasets for complex trajectories. Here, X represents the observed
2D positions. The results demonstrate that our approach generates predictions
that align more closely with the ground truth than the baselines.

7.3 Full-driven Clusters for Prediction

7.3.1 SC GAN for Probabilistic Prediction

The goal is to leverage full-driven SC GAN (FP SC GAN described in Sec. 6.4.3)
and the resulting clusters to explicitly condition a trajectory predictor. We
propose a model-agnostic multi-stage system to achieve a similar objective
to class-conditioned methods (see Sec. 4.2): predicting the future of a given
tracklet conditioned on a specific class. In this case, the classes are data-driven,
representing groups of similar trajectories. Additionally, our system (¢Yp_rp)
ensures that predictions are probabilistically informed during inference. The
task, referred to as D-TP (defined in Sec. 1.2), can be formally expressed as:

Yp-Tp: Sk, cs,avs, F YS,,PS@Ys, 1 (7.3)

where Sy, represents the observed tracklet, cs, v, denotes the class of the
full trajectory’s states, Yg, is the future trajectory states, and Ps,avs, is
the probability associated with the observed tracklet concatenated with the
predicted future Sy & Ys .

To address this problem, we propose the multi-stage framework illustrated
in Fig. 7.4. This framework begins by transforming the input trajectories’ 2D
positions into the displacement space, represented as the finite differences of
the 2D positions. Having the input states (Sy) as the displacements (equiva-
lent to the velocities), the predictor avoids dependence on the spatial context
of the input data, facilitating transferability to new domains. In the second
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step, the ground truth displacement vectors (S ®Ys, ) are partitioned into N,
clusters using a clustering method, such as FP SC GAN. This clustering step is
essential as it groups akin trajectories’ states (in this case, the displacements),
producing trajectory clusters, which then condition the prediction process. In
the third step, we train conditional Deep Generative Models (¢cDGMs), such
as conditional Variational Autoencoders (cVAEs) or conditional Generative
Adversarial Networks (cGANs), to predict future displacements based on the
observed states and their corresponding cluster class cs,avg, (i-e., the iden-
tifier for the cluster derived from the ground truth displacements). Here, we
use cDGMs and corresponding training settings similar to the ones described
in Sec. 4.3. As we cluster the entire trajectory’s states, the cDGM establishes
a connection between the prediction, the observed displacement tracklet, and
the cluster class. This connection ensures that the predicted trajectory for a
given cluster class cs,evs, is more similar to the trajectories within the same
cluster than trajectories from other clusters. During inference, the system gen-
erates candidates for each cluster. Then, it employs a ranking method to assign
probabilities to the proposed predictions, ensuring informed and accurate tra-
jectory forecasts.
The final step of the system aims at finding the mapping:

S D Ysk — psk@?sk, (74)

which assigns probabilities to the N, X ny,s predicted samples correspond-
ing to ni,¢ predictions per cluster. This mapping ensures that samples from
the correct cluster are assigned higher probabilities compared to those from
other clusters. One approach to achieve this is to train a deep neural network
to directly learn the mapping in Eq. (7.4), as demonstrated in [90, 21]. Al-
ternatively, we propose using distance-based similarity measures, leveraging
two methods: centroids and neighbors. We assume an inverse relationship be-
tween distance and similarity in the clustering space in both methods. For
instance, smaller distances to a cluster’s centroid indicate higher similarity
to that cluster’s samples, leading to a greater probability of belonging to it.
Fig. 7.5 provides a visual representation of our method: assuming the ground
truth cluster class is cluster 1 (Yc(l) ), the intuition is that the generated sam-
ples conditioned on the ground truth cluster (YC(U) are closer to cluster 1
(in blue) compared to the samples generated under other clusters and their
respective conditioning cluster’s centroid. Similarly, in the neighbors method,
smaller average distances to the Vi, nearest neighbors of the same cluster
increase the likelihood of a sample belonging to that cluster.
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Formally, in distance-based methods, the probability of a predicted trajec-
tory belonging to its conditioning cluster ¢(¥ is computed using a soft-argmaz
function over the inverse distances:

<p(=/7)
S e /)

Pey = (7.5)

where m represents the distance measure, and 7 is a temperature parame-
ter controlling the sharpness of the probability distribution. In the centroids
method, m,) is the L2-distance between the sample embeddings Encp(Sg ®
Ysk) and the centroid of cluster ¢¥. In the neighbors method, me is the
average L2-distance to the Ny nearest neighbors from cluster D, Alg. 2
summarizes our framework’s training and inference pipelines.

7.3.2 Experiments
Datasets and Baselines

We evaluate our methods using two experimental setups: a train-test split and
a leave-one-dataset-out approach. For the train-test split, we use two datasets:
THOR [83] and Argoverse [17], as described in Sec. 6.4.4. These datasets pro-
vide diverse scenarios representing indoor robotics and road-based environ-
ments, respectively. In the leave-one-dataset-out approach, we perform exper-
iments on the widely adopted ETH/UCY benchmark [60, 76], as described in
Sec. 6.4.4.

Furthermore, we conduct the experiments with baselines widely used in
scientific works in the trajectory prediction field:

e Constant Velocity Model (CVM) [88]: Heuristic model that assumes that
humans move with constant velocity and direction. In this work, we also
include it for road agents’ data (Argoverse). In [88], the velocity is given
by the projection of the last displacement, but we use a weighted sum of
the previous displacements based on a Gaussian kernel provided by [82].
Both methods achieve similar results.

e RED-LSTM predictor (RED) [7]: Deep learning-based model that stacks
an LSTM (64 hidden dimensions) with a 2-layer MLP (hidden dimensions
of 32 and 16). Inputs are linearly embedded displacements processed
through a linear layer with 16 hidden dimensions, and a PreLLU activation
function is applied after each layer.

e GAN (GAN) and VAE (VAE) [52]: We adapted these models to remove
mechanisms for social interaction modeling, focusing solely on trajectory-
related information. These generative models, along with our proposed
methods described in Sec. 6.4.1, share the same network configuration: an
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Figure 7.4: System overview. (1) We transform 2D positions into the displace-
ment space (finite differences of positions). (2) We cluster the full-driven dis-
placement data into N, partitions. (3) We train a data-driven class-conditioned
deep generative model that takes as input the trajectory’s states (Sg), the re-
spective cluster class (c), and white noise (z;). During inference, the predic-
tion model proposes N, predictions. (4) The ranking step assigns probabilities
to the predicted trajectories of each cluster.

initial linear layer with 16 hidden dimensions, an LSTM with 64 hidden
dimensions, and a final linear layer with 32 hidden dimensions for decod-
ing temporal features. To evaluate the ability of these models to generate
a wide range of plausible trajectories, we incorporate the k-variety loss
introduced in [37]. This loss function evaluates the sample closest to the
ground truth out of kyaricty generated trajectories, encouraging multi-
modal diversity during training. In our experiments, kvaricty = 3.

As described in Sec. 7.3.1, we compare two cDGMs: ¢VAE (OURS-VAFE)
and ¢cGAN (OURS-GAN). Additionally, we evaluate three clustering algo-
rithms: K-means, TS K-means, and the proposed FP SC GAN (see Sec. 6.4.3).
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Figure 7.5: Ilustration of our centroid distance-based method to rank trajec-
tories during inference. The bold blue circle (cluster 1) represents the ground
truth cluster. After training, samples generated conditioned on cluster 1 are
closer to the corresponding centroid than those generated under other clusters
and their corresponding conditioning cluster’s centroid (in this case, clusters
2 or 3).

Furthermore, we have three predictions ranking methods: (1) based on the Eu-
clidean distance to the centroids (cent); (2) based on the Euclidean distance
to the Nyeig closest neighbors (set to 20) in the displacement space and fea-
ture space, denoted as neigh-ds and neigh-fs, respectively. It is important to
note here that neigh-fs is only used in FP SC GAN as it is the only method
that makes use of a deep feature space; on the other hand, K-means and TS
K-means require the predictions ranking based on the displacement space,
as there is no deep feature space in these traditional methods; (3) based on
the classification provided by the auxiliary network (anet). We evaluate the
predictions ranking methods for one prediction per cluster class, niy,s = 1.



148 CHAPTER 7. PREDICTION WITH DATA-DRIVEN CLASSES

Algorithm 2 Multi-stage framework for probabilistic trajectory prediction

Require: Training data {(Si,Ys,,Ps,)}r (tracklets, futures, and ground
truth positions), number of clusters N,
Initialize all components of ¥p_1p > Clustering and prediction methods.
Step 1: Full-driven Clustering
for each trajectory (Si,Ys,) do

Concatenate observed and future states: S, ® Yg, .

Assign cluster label: ¢, = Cluster(S; & Ys, ).

Save cluster assignments {cy}.
end for
Step 2: Training the Generative Predictor
while training not converged do

Sample minibatch {(Sk, Ysk s Psk s Ck)}k-

Update the generative model (GAN or VAE) to minimize the respective
losses.
12: end while
13: Step 3: Inference via Cluster Sampling
14: Initialize list of predictions P < ()
15: for i < 1 to ni,r do > Sample nj,¢ futures from the generative model.
16: for j < 1 to N, do > Iterate over cluster classes.
17: Generate prediction:

— =
= O

Ygi) = Predictor(Sy, ¢\9))

18: Add Yg:) to prediction set P.
19: end for
20: end for

21: Rank predictions in P with ou centroids or neighbors methods.
22: return Trained framework ¢¥p_Tp and ranked predictions P

Metrics

The metrics used to evaluate the performance of the methods are based on Top-
K ADE and FDE, both measured in meters, as defined in Egs. (1.1) and (1.2).
These metrics enable a fair comparison between single-output predictors (CVM
and RED) and stochastic multi-output models (GAN, VAE, VAE-OURS, and
GAN-OURS). The evaluation framework includes:

e Top-3 ADE/FDE: This metric assesses the multimodal trajectory esti-
mates produced by generative models. For GAN and VAE, three trajec-
tories are sampled, and the one closest to the ground truth is evaluated.
For GAN-OURS and VAE-OURS, the three most likely trajectories are
selected, and the closest one to the ground truth is evaluated.
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e Top-1 ADE/FDE: This metric compares point estimate predictors with
stochastic multimodal models. For GAN and VAE, the first trajectory
prediction is evaluated, while for GAN-OURS and VAE-OURS, the most
likely trajectory is selected for evaluation.

To further assess the performance of the predictions ranking methods, we use
accuracy, as defined in Eq. (1.3). This metric compares the outputs of the rank-
ing methods to the soft labels derived from the clustering step, providing an
additional perspective on the effectiveness of the probabilistic assignment and
ranking strategies. The results for deep learning-based methods are averaged
over five runs.

7.3.3 Quantitative Results
Prediction Results

Tab. 7.4 presents the Top-3 ADE/FDE results for deep generative approaches.
Our proposed framework (GAN-OURS and VAE-OURS) demonstrates su-
perior prediction performance across all datasets, underscoring the effective-
ness of generating multiple plausible trajectories based on the conditioning
cluster, regardless of the underlying prediction model (model-agnostic). This
approach is more accurate than relying exclusively on the k-variety loss. Ad-
ditionally, the results reveal that various clustering methods and predictions
ranking mechanisms yield comparable performance across datasets. However,
certain configurations have an edge in specific cases. For instance, in the THOR
dataset with GAN-OURS, the cent mechanism achieves ADE/FDE values of
0.45£0.02 and 0.75 4+ 0.03, respectively. Similarly, in the ZARA?2 dataset, the
combination of T'S K-means and neig achieves ADE/FDE values of 0.37+0.01
and 0.62 £ 0.01, respectively.

To assess the variability of the generative models against the predictions of
single-output baselines, we present the Top-1 ADE/FDE in Tab. 7.5. Although
the single-output deep learning-based baseline, RED, demonstrates the best
overall results, our framework produces comparable scores in the ETH, HO-
TEL, and ZARA1 datasets. Our framework with the two prediction methods
(GAN-OURS and VAE-OURS) outperforms their counterparts (with the same
network structure) in Top-1 scores. Additionally, our approach effectively re-
duces the performance gap between Top-3 and Top-1 predictions, demonstrat-
ing its ability to mitigate the variability often seen in generative models [50].
An important advantage of our framework is its ability to assign meaningful
probabilities to predicted trajectories, creating a probabilistic space of likely
future locations rather than generating uninformative predictions. Moreover,
while CVM performs competitively in human trajectory data, its performance
declines substantially in road agent scenarios, where it struggles to account
for speed variations in the trajectories. These results further emphasize the
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Table 7.4: Top-3 ADE/FDE (]) metrics in the test
sets. Bold scores highlight superior performance of our
framework for both prediction methods.

Datasets |  GAN GAN-OURS' | VAE VAE-OURS"
tHOR | 07001 0.53£0.01 | 062002  0.56:+0.01
1.044£0.03 0.8440.03 | 1.05+0.05 0.89+0.02

Arsoverse | 162007 156£0.02 | 196£0.02  1.62:+0.02
TEOVEISC | 9814+0.14 2.69+0.02 | 3.44+0.06 2.82+0.04
ory | 084£0.03 077004 [094:£0.02 0.82+0.02
1.64+0.06 1.60+0.11 | 1.84+0.04 1.60+0.04

HOTEL | 087007 081010 | LO8=0.04 0.97+0.08
1644012 1.4640.11 | 1.95+0.06 1.72+0.14

UNIy | 036=001  0.51+£0.01 | 0.61£0.01  0.56:+0.01
1.08+£0.02 0.98+0.03 | 1.16+£0.01 1.06+0.02

ZARAL | 0435002 037001 | 048001 0.44+0.01
0.82+0.07 0724003 | 098+0.04 0.91+0.03

JARAy | 046£001  0.40£0.01 | 0494001 043001
0.81+0.05 0.65+003 | 0.86+0.05 0.73+0.01

1
FP SC GAN + neig-fs

Table 7.5: Top-1 ADE/FDE ({) metrics in the test sets. Bold scores
highlight the superior performance of single-output methods for Top-1
predictions.

VAE VAE-OURS*
0.71+£0.02  0.714+0.02

CF-GAN  GAN-OURS!
0.854+0.09  0.76 +0.02

Datasets ‘ CVM RED
0.79 0.65+0.01

091 0.80+0.01 | 1.24+0.09 0.86 £ 0.04 1.13+0.07  0.93£0.01

THOR ‘ 128  1.06 +0.01 ‘ 1.68+£020 1.314+0.05 ‘ 1.30+£0.04  1.21+0.04
Arsoverse | 297 L84£001 [ 2415009  192:+£0.02 | 2694002 1.95%0.01
TBOVETSC | 393 3.18+0.02 | 4.53+0.17 3274003 | 4.94+0.02 3.39+0.04
ETH 095 0.95+0.01 | 1.08+0.08 0.96+0.03 | 1.08£0.03 0.95+0.02
211  1.94+0.02 | 2184+0.19 1.99+0.05 | 2.15+0.08  1.95=+0.03

HOTEL | 042 1032004 | 1L03£0.05 095+0.13 | L1I8£0.05 1.09+0.12
0.74 1.84+0.06 | 1.994+0.11 1.72+£0.19 | 2.21+£0.08 1.96+0.18

UNIy | 065 0.65:+001 074003 0.74£0.01 | 0.71£0.01  0.69=0.01
129 1274001 | 1.494+0.05 1.44+0.04 | 1414001 1.36+0.01

ZARAL | 051 045£001 | 060011  047+001 [0.64+001  0.53=001
: 1.05 0.87+0.01 | 1.21£024 0.92+0.03 | 1.334£0.03  1.10£0.02
ZARA2 ‘ 0.55 0.50+0.01 ‘ 0.654+0.02  0.5240.01 ‘ 0.60+0.02  0.5440.01

1
FP SC GAN - neig-fs

robustness of our proposed deep learning-based methods in diverse environ-
ments.
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Table 7.6: Accuracy (1) of the predictions ranking methods in the test sets of
the train/test split setting.

Clustering ~ Ranking -~
methodg metho§ THOR Argoverse
cent 0.83+0.01 0.95+0.01
K-means neigh-ds | 0.81 £0.01  0.94 £+ 0.01
anet 0.87+0.01 0.95+0.01
cent 0.66 £0.01  0.9440.01
TS K-means neigh-ds | 0.66+0.01  0.9540.01
anet 0.73+0.01 0.96 +0.01
cent 0.64+0.06 0.97+0.01
neigh-fs | 0.68 £0.03  0.96 £ 0.05
anet 0.70+0.01 0.95+0.01

FP SC GAN

Predictions Ranking Results

Tab. 7.6 presents the accuracy of the predictions ranking methods in the test
sets of the train/test split settings (THOR and Argoverse). The results demon-
strate that the accuracy of these ranking methods directly impacts both the
Top-3 and Top-1 ADE/FDE scores reported in Tab. 7.4 and Tab. 7.5, respec-
tively. A general observation is that higher ranking accuracy correlates with
improved ADE/FDE scores, particularly for Top-1 metrics. Within each clus-
tering method and dataset, anet achieves superior accuracy only in the THOR
dataset across all clustering methods. We speculate this is because THOR’s
clusters are closer to each other, as the participants operated within the same
environment, featuring similar motion patterns across the train and test sets.
Conversely, in Argoverse, the behavioral diversity among different agent types
(e.g., vehicles and other road agents) leads to more distinct clusters, reducing
anet’s relative advantage.

In the leave-one-dataset-out setting (see Tab. 7.7), where datasets inher-
ently show diverse behaviors due to the train/test splits, our proposed distance-
based methods (cent, neigh-ds, and neigh-fs) outperform the auxiliary neu-
ral network (anet) in most cases across various clustering methods. While
the constant-width MLP-based anet provides accurate estimates, its compu-
tational complexity scales as O(NLH%), where Ny, is the number of layers,
and Hy is the number of hidden units per layer. In contrast, distance-based
methods such as centroids and neighbors require only O(N.) and O(NeNpeig)
computations, respectively, where N, is the number of clusters and Nyig is the
number of neighbors. Thus, distance-based methods offer computational ad-
vantages beyond their comparable accuracy to anet. They eliminate the need
for training an additional neural network and achieve inference in linear time,
whereas auxiliary networks operate in quadratic time.
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Table 7.7: Accuracy (1) of the predictions ranking methods in the test sets in
the leave-one-dataset-out setting.

Clustering  Ranking ETH HOTEL UNIV ZARA1 ZARA2
method method
cent 0.95 +0.01 1.00+0.00 0.84+0.01 0.93+0.01 0.94 +0.01
K-means neigh-ds | 0.98+0.01 0.99+0.01 0.81+0.01 0.90+0.01 0.96 +0.01
anet 0.93+£0.02 0.99+0.01 0.83£0.01 0.94+0.01 0.95£0.01
cent 0.95+0.01 1.00+0.00 0.87+001 093+0.01 0.95+0.01
TS K-means neigh-ds | 0.98 £0.01  0.99 + 0.00 0.82£0.01 091+0.01 0.95+0.01
anet 0.95+0.01 0.98 +£0.01 0.84 +0.01 0.93+0.01 0.95+0.01
cent 0.70 £ 0.11 0.79 £ 0.09 0.65+0.02 091+0.04 0.91+0.04
neigh-fs | 0.75+0.05 0.91+0.06 0.65+0.03 0.90=£0.05 0.89+0.02
anet 0.69+0.08 0.83£0.08 0.56+0.03 0.91+0.03 0.90+0.03

FP SC GAN

7.3.4 Qualitative Results

In Fig. 7.6, we present qualitative examples of the Top-3 predictions from
our proposed methods and the baselines across the THOR (left), Argoverse
(center) and ZARA1 (right) test sets. The THOR example illustrates a partic-
ularly challenging scenario described by a sharp heading change. Despite this
complexity, our method successfully captures this uncommon behavior within
the three most probable trajectories, assigning a likelihood of p = 0.26. The
most probable trajectory (p = 0.48) aligns with the movement’s general trend,
which is reasonable given the most likely constant velocity profile of human
walking [88].

In the Argoverse example, the auxiliary network shapes hierarchical pre-
dictions, yielding more information about our models’ predictions. The Top-1
prediction (p; = 0.29) is also the closest to the ground truth. The second most
likely trajectory (p2 = 0.23) follows the same direction but with a shorter dis-
tance, while the third most likely trajectory (ps = 0.16) diverges in direction
but remains a plausible alternative. Finally, in the ZARA2 example, while the
baseline GAN fails to fully capture the static behavior, our framework suc-
cessfully generates this underrepresented behavior and assigns it the highest
probability.

7.4 Conclusions

This chapter presented prediction frameworks that leverage data-driven trajec-
tory classes to improve trajectory prediction diversity and accuracy. Building
upon the SC GAN framework developed in Sec. 6.4.2, we exploited unsuper-
vised clustering in the discriminator’s feature space to discover distinct behav-
ioral modes, each corresponding to unique trajectory characteristics. Using
these future-driven clusters, we proposed three novel training strategies incor-
porating FD SC GAN-derived information into the prediction process. Our
experimental results demonstrated that these strategies outperform baseline
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Figure 7.6: Top-3 predictions in test samples from THOR (left), Argoverse
(center), and ZARA2 (right). p;cjo,n.—1) the probabilities provided by our
predictions ranking methods.

models, particularly for predicting the most challenging clusters while main-
taining competitive performance across the broader distribution of trajectories.
In addition, FD SC GAN generates effective trajectory clusters and provides
valuable insights into the structure and impact of these clusters on the forecast-
ing task. We further extended the utility of data-driven classes by introducing a
multi-stage probabilistic prediction framework based on full-driven clustering.
This system operates through four key stages: displacement space transforma-
tion, clustering through full-driven SC GAN (FP SC GAN), data-driven class-
conditioned trajectory prediction, and final prediction ranking. Transforming
trajectories into displacement space removes dependencies on absolute spatial
positioning, enhancing generalizability across different environments and de-
ployment contexts. For the clustering stage, we employed FP SC GAN, which
combines the strengths of clustering and generative modeling to produce holis-
tic trajectory classes. For ranking and selecting predictions, we introduced ef-
ficient distance-based scoring mechanisms that outperformed auxiliary neural
network approaches, offering substantial computational advantages by scaling
linearly with the number of candidates rather than quadratically as an MLP.
By combining these components, our system underlying VAE- and GAN-based
models surpassed their counterparts equipped with k-variety loss in Top-3
ADE/FDE scores while achieving comparable or superior Top-1 ADE/FDE
scores. Our experimental results across diverse datasets validate the accuracy
and robustness of the proposed framework.

Finally, this chapter contributed two frameworks: (1) training strategies for
GAN-based predictors that enhance diversity and mitigate the mode collapse
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problem and (2) a multi-stage prediction framework that efficiently integrates
data-driven classes to produce more accurate and probabilistically calibrated
trajectory forecasts. By integrating meaningful data-driven trajectory classes
and employing efficient distance-based mechanisms, our frameworks establish
a solid foundation for advancing trajectory forecasting and modeling in het-
erogeneous data settings.



Chapter 8

Conclusions

Education must enable one to sift and weigh evidence, to discern the true from the
false, the real from the unreal, and the facts from the fiction.
— Martin Luther King Jr., The Purpose of Education

Understanding and predicting heterogeneous human motion is a fundamen-
tal capability for robots and intelligent systems deployed in complex, dynamic
environments. In industrial settings, autonomous mobile robots must navigate
safely and efficiently while sharing space with human workers, adapting their
behavior to diverse agent roles, tasks, or activities. In autonomous driving sce-
narios, accurately forecasting the trajectories of surrounding agents, including
vulnerable road users such as pedestrians and cyclists, is crucial for safety and
decision-making. Similarly, in smart home environments, intelligent systems
rely on trajectory understanding and prediction to anticipate human behavior
and respond proactively.

This thesis investigates trajectory heterogeneity by modeling how differ-
ences in agent roles, activities, and motion patterns influence and improve
prediction accuracy. The final chapter summarizes the key contributions of
this work in Sec. 8.1 and outlines promising directions for future research in
Sec. 8.2 aimed at further advancing our knowledge of trajectory classes for
trajectory prediction in human-centered environments.

8.1 Thesis Contributions and Summary

This thesis investigates trajectory heterogeneity in human-centered environ-
ments, addressing the whole pipeline from data collection to integrating ob-
servable and data-driven classes into trajectory prediction frameworks. The
central concept introduced is trajectory classes, which are groups of trajec-
tories that share common characteristics. These classes can be defined either
through semantic, human-interpretable labels (observable classes) or learned

155
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directly from trajectory data (data-driven classes). The overarching research
goal is to leverage both trajectory classes to enhance the analysis and predic-
tion of human motion.

A central contribution of this thesis is the development of novel datasets
that enable the study of heterogeneous human behavior in robot-shared en-
vironments. We introduce the THOR-MAGNI dataset in Chapter 3, a large-
scale, richly annotated dataset recorded in a mock industrial facility. It cap-
tures diverse human activities, including group navigation, object transporta-
tion, and interactions with a mobile robot. We found that this dataset enables
the study of observable classes and their influence on trajectory prediction.

Building on THOR-MAGNI, we investigate the representational power of
observable classes defined by human roles in our dataset for trajectory predic-
tion. We propose class-conditioned deep learning baselines based on LSTM,
Transformer, GAN, and VAE architectures using the methods in Chapter 4.
We evaluated these models across imbalanced and low-data regimes in both
indoor (THOR-MAGNTI) and outdoor (Stanford Drone Dataset) environments.
Our results show that observable classes generally improve predictive accuracy.
Moreover, in low-data regimes or class-imbalanced scenarios, pattern-based
approaches such as Maps of Dynamics outperform deep learning models, high-
lighting the need for data-efficient prediction strategies. These findings inform
a model selection framework tailored to data availability and class distribution
in heterogeneous scenarios.

Despite the capability demonstrated by observable classes, they have also
shown limitations. They are statically assigned to agents and remain constant
across all associated trajectories, even when the underlying behaviors vary.
This semantic ambiguity arises when a single observable class contains mul-
tiple distinct motion behaviors, or when similar behaviors appear across dif-
ferent class labels, reducing their predictive discriminability. To mitigate this,
in Chapter 5, we extend THOR-MAGNI with frame-level action annotations,
resulting in THOR-MAGNI Act. These fine-grained action labels provide rich
contextual cues that augment the predictor’s input state. When integrated
through multi-task learning or direct conditioning, they reduce semantic am-
biguity and enhance prediction accuracy by capturing intra-agent behavioral
variability.

The thesis also explores data-driven classes: trajectory clusters derived di-
rectly from trajectory data without relying on external perception. In Chap-
ter 6, we propose Self-Conditioned GAN (SC GAN), a generative framework
that learns meaningful trajectory embeddings through self-conditioning. These
embeddings form trajectory clusters that provide privileged information for
downstream predictors. By exposing models to rare yet semantically relevant
modes, such as stopping behavior, SC GAN helps address challenges like mode
collapse in generative models with the approaches described in Sec. 7.2.

In Sec. 7.3, we further extend the clustering of trajectory data to develop
a multi-stage probabilistic prediction framework, which leverages clusters de-
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rived from entire trajectory sequences to generate, condition, and rank multiple
future trajectory predictions. Although these clusters depend on future states
and are unavailable during inference, we introduce lightweight ranking mecha-
nisms that leverage their benefits at test time. This framework enables robust,
probabilistically informed predictions while avoiding the complexity of explicit
perception-based class detection.

In summary, the key contributions of this thesis are:

e The THOR-MAGNI dataset: A novel dataset capturing heteroge-
neous human motion in industrial settings, enabling analysis of observ-
able classes.

e Class-conditioned deep learning trajectory predictors analysis:
LSTM-, Transformer-, VAE-, and GAN-based predictors that efficiently
and effectively incorporate class labels, tested across imbalanced and
low-data regimes.

e Action-augmented state representation for trajectory model-
ing: THOR-MAGNI Act, an extension of THOR-MAGNI with fine-
grained action annotations that improve predictive accuracy and mit-
igate class ambiguity. Efficient and effective action-conditioned predic-
tors and joint action and trajectory prediction methods based on the
Transformer architecture.

e Self-Conditioned GAN for learning data-driven classes: a genera-
tive model that discovers trajectory clusters used to enhance GAN-based
predictors.

e Multi-stage probabilistic prediction framework: a clustering-based
prediction strategy leveraging full trajectory clusters to improve inference-
time prediction via ranking mechanisms.

Collectively, these contributions provide a principled and empirically val-
idated framework for incorporating trajectory classes, both observable and
data-driven, into human trajectory prediction. Specifically, in this work, we
demonstrate how understanding and exploiting motion trajectory heterogene-
ity can lead to more accurate, generalizable, and context-aware trajectory pre-
dictors for intelligent systems deployed in human-centered environments.

8.2 Future Work

While this thesis presents a comprehensive foundational investigation of tra-
jectory heterogeneity through observable and data-driven classes, several open
questions and research challenges remain. Integrating trajectory classes into
predictive frameworks inherently involves trade-offs between interpretability,



158 CHAPTER 8. CONCLUSIONS

scalability, and robustness. Observable classes offer high interpretability by
relying on human-labeled categories but depend on upstream perception sys-
tems that may introduce noise or fail in complex environments. In contrast,
data-driven classes depend solely on the trajectory data, providing flexible and
adaptive representations, yet often lack semantic clarity.

Future research should investigate these trade-offs, with particular atten-
tion to hybrid approaches that combine the interpretability of observable
classes with the representational power of data-driven classes. We elaborate
on this idea in Sec. 8.2.1. Additionally, observable classes rely on perception
and detection systems, which raise concerns about robustness under sensor
noise or misclassification. The impact of such failures on predictive perfor-
mance should be systematically evaluated, as discussed in Sec. 8.2.2.

Finally, while this thesis explored data-driven classes derived from fixed
trajectory segments (e.g., observed, future, or entire trajectories), a promis-
ing extension involves learning trajectory classes across variable time hori-
zons, which would allow for the discovery of fine-grained, temporally localized
motion patterns that are not constrained by predefined and static trajectory
segmentation. We outline this direction in Sec. 8.2.3.

8.2.1 Hybrid Observable and Data-driven Class Condi-
tioning

Observable classes encode human-understandable semantics that support in-
terpretable reasoning in trajectory prediction. For instance, one may reason:
“If the observed trajectory shows this pattern and the agent is a pedestrian,
then it is likely to continue in this manner.” Such reasoning enables the incor-
poration of prior knowledge about agent types (e.g., pedestrians typically move
more slowly than vehicles and tend to remain on sidewalks), providing privi-
leged information that can enhance both the safety, reliability, and accuracy
of prediction and planning processes.

In contrast, data-driven classes are derived directly from motion cues. They
are agnostic to semantic categories and thus better capture motion-specific pat-
terns, such as stopping behavior (see Sec. 7.3) that may not be distinguishable
through observable classes alone. These representations are less ambiguous
and can capture subtle variations in motion that static observable labels may
overlook.

Given their complementary strengths, combining observable and data-driven
trajectory classes presents an opportunity to unify semantic interpretability
with motion-based expressiveness. Specifically, we propose a hierarchical con-
ditioning strategy in which clustering is applied within each observable class.
This approach yields hybrid class labels that encode human-interpretable se-
mantic attributes and motion pattern similarity, offering a richer and more
discriminative input for trajectory prediction models. Fig. 8.1 illustrates this
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Figure 8.1: From top to bottom: clustering separately each observable class
yields hybrid class labels that retain semantic interpretability while capturing
data-driven patterns.

process, which can be seamlessly integrated into the prediction frameworks
developed in this thesis.
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8.2.2 Robustness of Trajectory Classes

While trajectory classes have demonstrated strong potential to enhance pre-
dictive performance, their effectiveness in real-world systems depends critically
on robustness to noise, detection errors, and data imperfections.

Observable classes, in particular, rely on upstream perception systems (e.g.,
class detection, tracking, and activity recognition pipelines) to assign seman-
tic labels such as “pedestrian” or “worker”. These systems are often subject
to domain shifts, occlusions, and sensor noise, which lead to misclassifica-
tions or inconsistent class assignments. For instance, an individual carrying
an object might be misclassified as a different role, or an agent might switch
classes erroneously due to detection jitter. Since trajectory predictors condi-
tion on these labels, their misclassification can propagate through the system,
degrading prediction accuracy or even leading to unsafe behavior in robotics
applications.

In parallel, trajectory data is often affected by noise in measurement acqui-
sition, including errors in localization and delayed or missing detections. Such
issues impact data-driven class discovery (where noise can distort clustering)
and, consequently, the performance of the predictors trained on such data.

Future work should include a systematic robustness analysis to support the
deployment of trajectory class-aware predictors in real-world systems. This in-
cludes evaluating how prediction performance degrades under increasing levels
of:

e Perception-induced class noise by simulating misclassification rates
in observable class assignments;

e Trajectory noise is achieved by injecting perturbations into the ob-
served motion data and quantifying their effect on both class detection
and prediction accuracy.

Such studies would provide insights into the sensitivity of trajectory class-
based models and inform the development of robust architectures that can
either tolerate noisy inputs or adaptively reweight uncertain signals. Further-
more, this analysis could motivate the integration of uncertainty-aware mecha-
nisms, e.g., Bayesian inference or confidence-weighted conditioning, to mitigate
the impact of unreliable trajectory class signals.

8.2.3 Time-Granularity in Data-driven Classes

Throughout this thesis, data-driven trajectory classes have been defined at the
granularity of entire trajectory segments or fixed observation/prediction win-
dows. While this formulation captures broad motion patterns, it overlooks the
temporal evolution of motion patterns within a single trajectory. In practice,
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human trajectories often comprise a succession of distinct motion primitives,
such as stopping, accelerating, turning, or weaving, that unfold over time.

To address this, future work should explore the temporal decomposition
of trajectories into short-horizon segments, each associated with a data-driven
label representing a localized motion pattern. This fine-grained decomposition
would allow trajectory prediction models to treat motion as a temporally struc-
tured sequence of latent behavioral modes rather than a single global category
(see Fig. 8.2). Moreover, such decomposition must account for the non-uniform
temporal spacing of motion transitions, as real-world motion patterns may vary
in duration and timing. In summary, time-granular representation introduces
several advantages, such as (1) fine-grained decomposition, where predictors
can identify and respond to local behaviors such as an upcoming stop or turn,
(2) improved generalization, as shorter segments are more generalizable than
longer segments across agents and contexts, supporting transfer learning and
modular prediction, and (3) greater realism and interpretability, by reflecting
the inherently uneven temporal structure of human motion.

This notion of time-varying data-driven labels aligns conceptually with the
use of fine-grained action labels explored in Chapter 5, where the goal is to
capture the dynamic nature of human behavior in a finer representation. Both
represent temporally evolving annotations over the trajectory sequence, where
each time step or segment reflects a potentially distinct motion intent or be-
havioral mode. However, while action labels are manually defined and rely
on perception modules, time-varying data-driven labels offer a fully unsuper-
vised, trajectory-centric alternative. Consequently, time-varying data-driven
labels are robust to perceptual noise and adaptable to diverse contexts with-
out requiring task-specific action semantics.

To enable this paradigm, future research must address several open chal-
lenges. First, robust methods for unsupervised segmentation and clustering of
short-horizon motion primitives are needed. Unlike full-trajectory clustering,
this task requires accurate temporal partitioning to ensure that motion pat-
terns are well-isolated and semantically meaningful. Second, researchers should
adapt predictive frameworks to model sequences of short-term behaviors by
extending action-conditioned models (see Chapter 5) to operate over sequences
of learned data-driven primitives.

Ultimately, time-granular data-driven classes can augment the state rep-
resentation of trajectory predictors in a manner analogous to action labels
and may be further integrated into hybrid class-conditioning frameworks as
described in Sec. 8.2.1. Fine-grained data-driven labels would enable more ex-
pressive, context-aware predictors capable of capturing the fine-grained vari-
ability of real-world motion.
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Figure 8.2: Overview of trajectory prediction with temporally decomposed
data-driven labels. Top: Ground-truth sequence of data-driven labels, rep-
resenting short-term trajectory patterns. Middle: Inferred data-driven label
based on an unevenly spaced temporal decomposition. Bottom: Predicted
future trajectory conditioned on the observed trajectory and the associated
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